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A B S T R A C T

To understand the complex problem of surface growth phenomena, we developed a model in which the regular
diffusion equation is coupled to the Kardar–Parisi–Zhang (KPZ) equation. The fundamental or Gaussian solution
of the regular diffusion equation is considered as an external noise or source term in the KPZ equation. The
obtained system of partial differential equations is analytically solved by a self-similar Ansatz and expressed
the solution as a combination of elementary and special functions. Using this solution, the effects of the
physical parameters were explicitly investigated. Our recent explicit numerical method, the leapfrog-hopscotch
algorithm, is also tested for this problem. It is shown that this method can be safely used with orders of
magnitude larger time step sizes than the usual explicit (Euler) scheme as well if we are far from the cusp-like
solutions. We pointed out that the cusps themselves cannot be properly simulated by any method that we
know.
1. Introduction

The phenomena of surface growth are fascinating and complex
problems from both a scientific and engineering point of view. The lit-
erature on the subject is vast, so we will mention only a few important
summary works (see1–3). Several mathematical models can describe the
growing process. However, if we try to describe and understand the
phenomenon, which is part of a more complex process and takes place
in parallel with other dynamic processes, we do not find much infor-
mation in the scientific literature. A typical example is hydrodynamics,
where at least mass and momentum transport are usually coupled; see,
for example, Euler’s equations. Coupling and studying surface growth
as an integral part of a complete hydrodynamic model is a challenging
topic. In the following, we present a more modest (but fully analyti-
cal) path, where we couple regular diffusion (as the source of noise)
with the well-known KPZ4 surface growth equation. For a simple and
transparent description, we use Cartesian coordinates and one spatial
dimension. In our next model we apply the self-similar Ansatz,5 which
is a powerful tool, to reduce the original coupled non-linear partial
differential equation (PDE) system to an ordinary differential equation
(ODE) system, which can be successfully solved with analytic means.
In the last decades we investigated numerous dynamical systems, like
viscous fluids,6 non-linear electrodynamics7 or quantum mechanics8
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with the self-similar Ansatz and presented physically relevant finite and
disperse solutions. One may also find applications when the Cattaneo–
Christov theory is used in the topic of viscous fluids9 or nanofluids.10,11

We have to mention two studies which are the direct forerunners of the
present work. In the first one, we investigated the KPZ equation with
four different kinds of colour, Gaussian and Lorenzian noise terms and
we presented fully analytic results with in-depth parameter dependence
analysis.12 We must highlight that the case of the Gaussian noise has
an analytic solution. Based on these analytic results detailed numerical
investigations were also performed by our group.13–15

The second precursor is a recent publication,16 in which we have
filled a gap and presented additional solutions to the regular diffusion
equation using the self-similar Ansatz, in addition to the basic Gaus-
sian solutions. Such non-trivial but simple solutions for non-regular
diffusion had not been presented before that work. Meanwhile, new
numerical algorithms were developed in17–19 for solving the diffu-
sion or heat-conduction equation. These are explicit schemes which
are unconditionally stable for the linear diffusion equation. These
algorithms were extensively tested for numerous irregular diffusion
equations where the diffusion coefficient had various temporal and
spatial dependencies, and the stiffness of the problem is very high.20–22

It turned out that in most cases, the leapfrog-hopscotch (LH) method is
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the most effective. Most of the algorithms have already been general-
ized to potentially more complicated equations related to diffusion, for
example, the nonlinear Fisher’s Equation23 and we have the hope that
other nonlinear equations can also be solved with them.

The first goal of our recent study is to provide in-depth analytical
and numerical analysis for a KPZ equation, where the driving term
is the Gaussian solution of the regular diffusion equation. We will
show that the analytic solutions can have cusps where the solutions
become infinite. This experience is consistent with the rigorous proof
of Muravnik who proved the absence of global positive solutions of
the KPZ equation.24 The second main goal of this work is to explore
the applicability of the most efficient LH algorithm to this nonlinear
problem. We will demonstrate that although the LH method is very
efficient in large parameter regions, it is unable to provide the solution
within the specified error close to the cusps. However, the solutions
remain finite, and the corresponding temporal and spatial derivatives
have finite values too. This is our first investigated model, where this
numerical method fails in a few specific parameter regions. We have
to mention that numerous similar systems like fractional diffusion,
fractional porous media or fractional reaction–diffusion equations were
investigated with various numerical methods like.25–28

2. The applied model

In the model under study, the regular diffusion and KPZ equation
are used. The KPZ equation indicates the mechanism of surface growth,
and it has on the r.h.s a Laplace term related to the spreading and diffu-
sion, a nonlinear term related to the first derivative of the surface level
and an additional term related to an external source. The concentration
derived from the first equation is used as additive noise or, in other
words, as a source condition in the second, KPZ equation:

𝜕𝐶(𝑥, 𝑡)
𝜕𝑡

= 𝐷
𝜕2𝐶(𝑥, 𝑡)

𝜕𝑡2
, (1)

𝜕ℎ(𝑥, 𝑡)
𝜕𝑡

= 𝜈
𝜕2ℎ(𝑥, 𝑡)
𝜕𝑥2

+ 𝜆
2

(

𝜕ℎ(𝑥, 𝑡)
𝜕𝑥

)2
+ 𝑡−

1
2 ⋅ 𝐶(𝑥, 𝑡), (2)

where 𝐶 denotes the concentration, ℎ is the height function, 𝐷 is
the diffusion coefficient and the parameter 𝜈 determines the surface
tension, while 𝜆 is proportional to the average growth velocity. The first
term on the right hand side of Eq. (2) describes relaxation of the inter-
face by a surface tension, which prefers a smooth surface. The second
term is the lowest-order nonlinear term that can appear in the surface
growth equation justified with the Eden model and originates from the
tendency of the surface to locally grow normal to itself and has a non-
equilibrium in origin. The third term is a Langevin noise one which
mimic the stochastic nature of any growth process and has usually a
Gaussian distribution. To obtain an unequivocal dispersive self-similar
solution, an additional 𝑡−1∕2 time-dependent factor has been included
in the KPZ equation, which makes the model explicitly time-dependent
or in other words, non-autonomous. This is an interesting feature of our
model. In our previous scientific work, we have already encountered a
non-autonomous PDE,16 derived from a time-dependent generalization
of the Cattaneo–Vernotte equation (non-Fourier heat conduction). That
led to the Euler–Poisson–Darboux PDE, which takes the form of a
telegraph wave equation with an extra 1∕𝑡 time dependence at the first
time-derivative term. To the best of our knowledge, there is no general
theory for non-autonomous PDEs. However, for non-autonomous ODEs
some monographs are available.29–31

To derive analytically, disperse, physically relevant solutions to (1),
we apply two self-similar Ansätze5 of the form:

𝐶(𝑥, 𝑡) = 𝑡−𝛼𝑔
( 𝑥
𝑡𝛽
)

= 𝑡−𝛼𝑔(𝜔), ℎ(𝑥, 𝑡) = 𝑡−𝛾𝑓
( 𝑥
𝑡𝛽
)

= 𝑡−𝛾𝑓 (𝜔). (3)

ll the similarity exponents 𝛼, 𝛽 and 𝛾 are of primary physical impor-
ance since 𝛼𝑎𝑛𝑑𝛾 represent the rate of decay of the magnitude of the
orresponding variable, while 𝛽 is the rate of spread (or contraction
f 𝛽 < 0) of the space distribution for 𝑡 > 0. The most powerful
2

result of this Ansatz is the fundamental or Gaussian solution of the
Fourier heat conduction equation (or for Fick’s diffusion equation) with
𝛼 = 𝛽 = 1∕2. This transformation is based on the assumption that a
elf-similar solution exists, i.e., every physical parameter preserves its
hape during the expansion. Self-similar solutions usually describe the
symptotic behaviour of an unbounded or a far-field problem; the time
and the space coordinate 𝑥 appear only in the combination of 𝑓 (𝑥∕𝑡𝛽 ).
t means that the existence of self-similar variables implies the lack of
haracteristic length and time scales.

The properties of these two trial functions were discussed in our
ormer studies6,12,16 also. The functions 𝑓 (𝜔) and 𝑔(𝜔) are called shape
unctions and must have appropriate smoothness. The corresponding
erivatives of function 𝐶(𝑥, 𝑡) are as follows

𝜕𝐶
𝜕𝑡

= −𝛼𝑡−𝛼−1𝑔(𝜔) − 𝛽𝑡−𝛼−1𝜔
𝜕𝑔
𝜕𝜔

(4)

𝜕2𝐶
𝜕𝑥2

= 𝑡−𝛼−2𝛽
𝜕2𝑔
𝜕𝜔2

(5)

Applying Ansatz (3) to the PDE system of (1)–(2) as it is presented
in the equations above, the next coupled ODE system can be derived

−1
2
𝑔 − 1

2
𝜔𝑔′ = 𝐷𝑔′′, (6)

𝜈𝑓 ′′(𝜔) + 𝑓 ′(𝜔)
[𝜔
2
+ 𝜆

2
𝑓 ′(𝜔)

]

+ 𝑔 = 0. (7)

or the self-similar exponents, the following relations have to be ful-
illed

= 1
2
, 𝛽 = 1

2
, 𝛾 = 0. (8)

ccording to these conditions, we have

= 𝑥
√

𝑡
. (9)

By choosing the proper initial conditions for the first diffusion equation
we can get the usual Gaussian solution

𝑔 = 𝑎𝑒
−𝜔2
4𝐷 , (10)

where 𝑎 is a constant. At this point, we have to emphasize that for
an arbitrary real 𝛼 and for 𝛽 = 1∕2, the solutions become much
more complicated and can be expressed with Kummer’s functions.
The properties of the solutions are exhaustively analysed in our latest
study.16 With this knowledge, the final form of the ODE obtained with
the shape function of the KPZ equation can be given as follows

𝜈𝑓 ′′(𝜔) +
𝑓 ′(𝜔)
2

[

𝜔 + 𝜆𝑓 ′(𝜔)
]

+ 𝑎𝑒
−𝜔2
4𝐷 = 0. (11)

After an exhaustive investigation, we may state that there is no general
formula available when all the four parameters 𝜆, 𝜂, 𝑎 and 𝐷 have
arbitrary numerical values. Fortunately, if the constrain 4𝐷 = 2𝜈 holds
the ODE has a simplified form of

𝜈𝑓 ′′(𝜔) +
𝑓 ′(𝜔)
2

[

𝜔 + 𝜆𝑓 ′(𝜔)
]

+ 𝑎𝑒
−𝜔2
2𝜈 = 0. (12)

We tried numerous parameter sets, but only this relation gives analytic
results. If any other numerical values are given for 𝐷 then there is no
analytic solution available, so numerical methods have to be applied.

3. Results

In the next subsections, we present the results of our analytic and
numerical analysis of Eq. (12). First, we give an analytic expression
followed by a detailed parameter study and a stability analysis of the
parameters. Later, we apply the leapfrog-hopscotch (LH) and the ex-
plicit (Euler) or, in other words, the forward-time central-space (FTCS)

scheme to solve the PDE system (1)–(2).
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Fig. 1. The shape functions 𝑓 (𝜔) of Eq. (13) for various {𝑎, 𝜆, 𝜈} parameter sets. In Fig. 1. (a), the black, red and blue lines are for the {0.1, 1, 1}, {1, 1, 1}, {20, 1, 1} numerical parameter
sets, in Fig. 1. (b). the parameter sets are changed to {1, 1, 1}, {1, 10, 1}, {1, 70, 1} numerical sets, and in Fig. 1. (c), the parameter sets are changed to {1, 1, 0.1}, {1, 1, 1}, {1, 1, 3},
respectively. The integration constants 𝐶1 = 1 and 𝐶2 = 2 are the same for all three curves. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
3.1. Analytical solutions

Using the Maple 12 mathematical software package, the next closed
expression for the solution can be derived

𝑓 (𝜔) = − 𝜈
𝜆
ln

⎛

⎜

⎜

⎜

⎝

1 +

⎡

⎢

⎢

⎢

⎣

tan

⎧

⎪

⎨

⎪

⎩

√

2𝜆𝑎𝜋 ⋅ 𝑒𝑟𝑓 ( 𝜔
2
√

𝜈
) + 2𝐶1

√

𝜈

2
√

𝜈

⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎥

⎥

⎦

2
⎞

⎟

⎟

⎟

⎠

+ 𝐶2, (13)

where 𝑒𝑟𝑓 denotes the error function. To learn more mathematical
properties of this function, consult the handbook of.32 Note, that the
expression depends on all three strength parameters 𝜆, 𝜈, 𝑎, and 𝐶1, 𝐶2
are the free integration constants. Fig. 1 presents various solutions for
different values of {𝑎, 𝜆, 𝜈}. The properties of these curves are far from
being trivial. It seems to be clear that the larger the strength of the
Gaussian source term 𝑎 the larger the number of the cusps. The role
of the second two parameters are however not so clear to see. We can
understand these properties on Fig. 2 later, if the 𝜈 − 𝜆 parameter pairs
are closer to a singularity than the cusp becomes deeper and deeper. It
is important to emphasize that due to the properties of the tan function,
the solutions may go to infinity with infinite first derivatives at given
points. The presented plots show, however, only finite singularities; this
is due to the Maple 12 software.

To have a deeper understanding of the solutions, Eq. (13) has to
be investigated in detail. The tangent function becomes singular if the
argument is equal to (2𝑛 − 1)𝜋∕2 where 𝑛 is an integer. Consider first
the case that 𝐶1 = 0. The error function is bounded between 0 and +1.
Analysing the argument of the 𝑡𝑎𝑛 function, it can be easily evaluated
that singularities occur for large 𝜔 if the relation of

√

𝜆𝑎𝜋∕(2𝜈) =
(2𝑛 − 1)𝜋∕2 is fulfilled.

Fixing the values of 2𝑎𝜋 = 1 and 𝜔 = 1, which provide the strength
of the noise term and an arbitrary position of the shape function, the
number of free parameters is reduced to two. In such cases, a stability
analysis can be performed for the function

tan

[
√

𝜆𝑒𝑟𝑓 (1∕2𝜈)

2
√

𝜈

]

. (14)

The stability chart of (14) is visualized on Fig. 2 for 𝜆 and 𝜇 intervals.
The rainbow regions show where the function has well-defined finite
values, and the black solid lines show the singularities. White regions
represent large finite values. The periodicity of the above-discussed
singularities is clearly visible. This type of stability analysis is quite
common, e.g. for Mathieu functions,33 and needs to be classified as
periodic or divergent for certain parameter pairs.
3

Now consider the case when 𝐶1 ≠ 0 together that
√

𝜆𝑎𝜋(2𝜈) < 𝜋
2 .

If we examine the argument of the tangent function more closely, we
can see that the upper value of the error function is one. If the constant
𝐶1 after the error function is small enough, it means that the result is
still continuous, and it is finite for any finite 𝜁 = 𝜔∕(2

√

𝜈), which is
presented in Fig. 3.

In case when 𝐶1 becomes larger, the argument of the tangent may
pass 𝜋∕2 and at this point, divergences appear in its value.

These phenomena are similar to phase transitions in which a transi-
tion occurs in the behaviour of the system at certain values of the order
parameter. This effect can be clearly seen in Fig. 4.

Our analysis clearly shows that the solutions have a very rich
mathematical structure and are far from trivial.

Fig. 5 presents the solution of the KPZ equation, the height ℎ(𝑥, 𝑡)
of the growing surface for the three parameter sets. On the right-hand
side figure, the distinct islands are clearly visible, whereas the valleys
between each island are, in fact, infinitely deep.

3.2. Numerical solutions

In this subsection we present our results obtained with numer-
ical means. We performed different calculations with the LH Algo-
rithms and with the FTCS scheme. First, we specify the time- and
space-discretization and then the used numerical algorithms.

Description of the numerical procedures applied
The time axis is uniformly discretized, which means 𝑡 ∈ [𝑡0 , 𝑡𝑓𝑖𝑛],

and

𝑡𝑛 = 𝑡0 + 𝑛𝛥𝑡, 𝑛 = 1,… , 𝑇 , 𝑇 𝛥𝑡 = 𝑡𝑓𝑖𝑛 − 𝑡0. (15)

An equidistant spatial mesh is used on the interval 𝑥 ∈ [𝑥0 , 𝑥𝑁 =
𝑥0 + 𝐿] ⊂ R as follows

𝑥𝑗 = 𝑥0 + 𝑗𝛥𝑥, 𝑗 = 0,… , 𝑁, 𝑁𝛥𝑥 = 𝐿. (16)

The considered space and time domain will be specified when the
numerical case studies are presented. After the application of the most
frequent central difference formulas for the first and second space
derivatives in Eqs. (1) and (2), we obtain two ODE systems for the node
variables:
𝑑𝐶𝑖
𝑑𝑡

= 𝐷
𝐶𝑖−1 − 2𝐶𝑖 + 𝐶𝑖+1

𝛥𝑥2
, (17)

and

𝑑ℎ𝑖 = 𝜈
ℎ𝑖−1 − 2ℎ𝑖 + ℎ𝑖+1 + 𝜆

(

ℎ𝑖+1 − ℎ𝑖−1
)2

+ 𝐶𝑖∕
√

𝑡. (18)

𝑑𝑡 𝛥𝑥2 8 𝛥𝑥
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Fig. 2. The stability of the function of Eq. (14) in the parameter ranges of 0 ≤ 𝜈 ≤ 150 and 0 ≤ 𝜆 ≤ 5, respectively. In the white regions, the investigated function lies outside the
range of [−10..10], while at the solid black lines, the function has singular values.
Fig. 3. The function 𝑡𝑎𝑛(𝑒𝑟𝑓 (𝜁 ) + 𝐶1), where 𝐶1 = 0.5. One can see, that the functions
is still finite and continuous.

In the case of the Explicit Euler time discretization, the forward differ-
ence formula is applied to the left side, while the whole right side is
taken at the old time level. This yields the FTCS schemes for Eq. (1):

𝐶𝑛+1
𝑖 = 𝐶𝑛

𝑖 + 𝑟𝑖(𝐶𝑛
𝑖−1 − 2𝐶𝑛

𝑖 + 𝐶𝑛
𝑖+1), (19)

and, for Eq. (2):

ℎ𝑛+1 = ℎ𝑛 + 2𝑟 (ℎ𝑛 − 2ℎ𝑛 + ℎ𝑛 ) + 𝑟 (ℎ𝑛 − ℎ𝑛 )2 + 𝐶 𝛥𝑡∕
√

𝑡𝑛, (20)
4

𝑖 𝑖 2 𝑖−1 𝑖 𝑖+1 3 𝑖+1 𝑖−1 𝑖
Fig. 4. The function 𝑡𝑎𝑛(𝑒𝑟𝑓 (𝜁 ) + 𝐶1) for 𝐶1 = 0.6. At this form the tangent function
yields a divergence.

where 𝑟𝑖 = 𝐷 𝛥𝑡
𝛥𝑥2

, 𝑟2 = 𝜈 𝛥𝑡
𝛥𝑥2

, and 𝑟3 = 𝜆
8

𝛥𝑡
𝛥𝑥2

can be called mesh ratios
for the different interactions.

When applying the leapfrog-hopscotch method, the odd and even
nodes must be treated differently. We start with a half-sized time step
for only the nodes with odd space index using the initial 𝐶0 and ℎ0
𝑖 𝑖
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Fig. 5. The solutions ℎ(𝑥, 𝑡) to Eq. (2) for three specific parameter sets. From left to right (a) {1, 1, 1}, (b) {4, 8, 5}, (c) {8, 20, 4} and the integration constants are fixed for all three
cases 𝐶1 = 1, 𝐶2 = 2.
values, which are substituted to the formulas

𝐶1∕2
𝑖 =

𝐶0
𝑖 + 𝑟1

2

(

𝐶0
𝑖−1 + 𝐶0

𝑖+1

)

1 + 𝑟1
, (21)

and for Eq. (2):

ℎ1∕2𝑖 =
ℎ0𝑖 + 𝑟2

(

ℎ0𝑖−1 + ℎ0𝑖+1
)

∕2 + 𝑟3
(

ℎ0𝑖+1 − ℎ0𝑖−1
)2

+ 𝐶1∕2
𝑖 𝛥𝑡∕

(

2
√

𝑡
)

1 + 𝑟2
.

(22)

After this, the Dirichlet boundary conditions are upgraded (nodes 0 and
𝑁 , thus 𝑁 should be even). Now the internal even nodes come: full time
steps must be made for them with the formulas

𝐶𝑛+1
𝑖 =

(1 − 𝑟1)𝐶𝑛
𝑖 + 𝑟1(𝐶

𝑛+1∕2
𝑖−1 + 𝐶𝑛+1∕2

𝑖+1 )
1 + 𝑟1

, (23)

and, for Eq. (2)

ℎ𝑛+1
𝑖 =

(1 − 𝑟2)ℎ𝑛
𝑖 + 𝑟2(ℎ

𝑛+1∕2
𝑖−1 + ℎ𝑛+1∕2

𝑖+1 ) + 𝑟3(ℎ
𝑛+1∕2
𝑖+1 + ℎ𝑛+1∕2

𝑖−1 )2 + 𝐶𝑛+1
𝑖 𝛥𝑡∕

√

𝑡
1 + 𝑟2

.

(24)

Further stages must be performed alternately for the odd and the
even nodes with (23) and (24), where 𝑛 can have half-integer values as
well.

At the final stage for the odd nodes, however, the time increment,
and therefore the 𝑟 quantities must be divided by two as follows

𝐶𝑇
𝑖 =

(1 − 𝑟1∕2)𝐶𝑇−1
𝑖 + 𝑟1∕2(𝐶

𝑇−1∕2
𝑖−1 + 𝐶𝑇−1∕2

𝑖+1 )
1 + 𝑟1∕2

, (25)

and, for Eq. (2)

ℎ𝑇
𝑖 =

(1 − 𝑟2∕2)ℎ𝑇−1
𝑖 + 𝑟2∕2(ℎ

𝑇−1∕2
𝑖−1 + ℎ𝑇−1∕2

𝑖+1 ) + 𝑟3∕2(ℎ
𝑇−1∕2
𝑖+1 + ℎ𝑇−1∕2

𝑖−1 )2 + 𝐶𝑇
𝑖 𝛥𝑡∕

√

𝑡
1 + 𝑟2∕2

.

(26)

The user must be aware that in each step, the latest available 𝐶 and ℎ
values of the left and right neighbours are used. The properties of the
LH method were exhaustively explained in our former studies,17,18 and
therefore, we skip them in this paper.

Numerical Experiment 1 Far from the cusps
We use the following parameters: 𝐷 = 3.5, 𝜈 = 7, 𝜆 = 2, 𝑐1 = 1, 𝐶1 = 3

and 𝐶2 = 0. With these parameters, the argument of the tangent
function is around 𝜋, so it is very far from half-integer 𝜋 values and
therefore no cusps can occur for any values of the space and time
variable.
5

The initial condition is obtained simply by substituting the initial
time into the analytical solution (10) and (13). Similarly, the appropri-
ate Dirichlet boundary conditions are prescribed at the two ends of the
interval using the analytical solutions (10) and (13). We produce the
numerical solution at the interval 𝑥 ∈ [−25, 25], which is discretized by
dividing it into 10000 equal parts, thus 𝛥𝑥 = 0.005. The initial and the
final time are 𝑡0 = 0.2 and 𝑡𝑓𝑖𝑛 = 2.2. Then, the error as a function of the
time step size 𝛥𝑡 has been calculated for both examined methods and
both functions. The results are displayed in Fig. 6. One can see that the
LH is a stable second order method, while the standard FTCS is stable
only below 𝛥𝑡 = 2⋅10−6. The residual errors (due to space discretization)
are around 10−7 and 2 ⋅ 10−7 and for 𝐶 and ℎ, respectively. We present
the graphs of the initial, final analytical and final numerical functions
of 𝐶 and ℎ in Fig. 7, where the time step size for the LH method is
𝛥𝑡 = 2 ⋅ 10−3. We can conclude that in this case, the LH method can
provide a qualitatively good solution with three orders of magnitude
larger time step size than the explicit Euler discretization.

Experiment 2 Close to a cusp
We use the following parameters: 𝐷 = 0.5, 𝜈 = 1, 𝜆 = 6, 𝑐1 = 1, 𝐶1 =

1 and 𝐶2 = 0. The space interval is 𝑥 ∈ [0, 1], the initial and the final
time are 𝑡0 = 9 and 𝑡𝑓𝑖𝑛 = 9.6. We will see that with these parameters,
the cusp, which is travelling to the right, has just left the examined
spatial region. We set 𝛥𝑥 = 0.0033, thus we expect even smaller residual
errors as in the previous experiment. The errors as a function of the
time step size are displayed in Fig. 8. One can see that, unlike the
FTCS scheme, the LH method is still stable. The residual error for C
is indeed smaller than in Experiment 1, but the errors for ℎ do not go
down to these small values as expected but remain around 6.7 ⋅ 10−5

for both numerical algorithms. We present the graphs of the functions
of 𝐶 and ℎ in Fig. 9, where the time step size for the LH method is
𝛥𝑡 = 4.7 ⋅10−3, which is again three orders of magnitude larger than the
stability threshold for the FTCS method. However, the large residual
error indicates that we are approaching the applicability limit of the
methods, which is mostly due to the cusp and, to a smaller extent, the
larger nonlinear coefficient.

Experiment 3 Focused on a cusp
We use the same parameters as in Experiment 2, except that now

𝜆 = 3, 𝑥 ∈ [0, 2], 𝑡0 = 1, 𝑡𝑓𝑖𝑛 = 1.1, 𝛥𝑥 = 0.01. We will see that with
these parameters, the cusp is almost in the middle of the examined
spatial region. The errors as a function of the time step size 𝛥𝑡 are
displayed in Fig. 10. One can see that the numerical methods for 𝐶 are
convergent as before, but the residual errors for ℎ have large values
for both numerical algorithms. The nature of this large error can be
understood when one takes a look on the graphs of the functions in
Fig. 11, where the smallest applied time step size 𝛥𝑡 = 3.8 ⋅ 10−7 was
used for the LH method. The graphs in Fig. 11 show that according
to the numerical solutions, the valley of the cusp is filled in instead

of moving to the right. This phenomenon is the same for the FTCS
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Fig. 6. Maximum errors as a function of time step size 𝛥𝑡 for the numerical solutions of Eqs. (1)-(2) in case of the standard FTCS scheme, and the leapfrog-hopscotch method.
Fig. 7. Graphs of the 𝐶 and ℎ functions in Experiment 1. The time step size for the LH method is 𝛥𝑡 = 0.002.
method as well, since the maximum difference between the FTCS and
LH function values is 𝛥𝑡 = 6⋅10−7. On the other hand, the LH is unstable
for large time step sizes, albeit the stability threshold is still larger than
for the FTCS scheme. For some other parameter values, e.g. for larger
𝜆 both algorithms are unstable for all examined time step sizes.
6

The reason for the failure of the finite difference numerical methods
lies in the previously mentioned fact that the first derivative of the
ℎ function can be arbitrarily large. In fact, the first two terms on
the right-hand side of (2) are increasing rapidly with opposite signs
as we are getting closer to the cusp, but their sum increases much
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Fig. 8. Maximum errors as a function of time step size for the numerical solutions of Eqs. (1)-(2) in the case of the standard FTCS scheme, and the leapfrog-hopscotch method
in Experiment 2.
Fig. 9. Graphs of the C and h functions in Experiment 2. The time step size for the LH method is 𝛥𝑡 = 0.0047.
slower. However, when the values of these derivatives are approxi-
mated numerically, the numerical error is proportional to the terms
themselves and not to their sum, therefore the numerical error becomes
comparable to the true values. The problem is that decreasing the space
step size does not give a remedy but yields even more instability. On the
other hand, decreasing the time step size cannot remove the inaccuracy
coming from the error of the space discretization, so we can say that
7

we reached the applicability limit of both the standard FTCS and the
non-standard LH algorithms.

Experiment 4 Numerical reference solution
In order to study a case for which the condition for the analytical

solution 4𝐷 = 2𝜈 is not valid, we set up a test problem with parameters
and initial conditions far from those above. Let us fix the parameters of
the equations to 𝐷 = 0.1, 𝜈 = 1, 𝜆 = 14. The space interval is 𝑥 ∈ [0, 1],
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Fig. 10. Maximum errors as a function of time step size for the numerical solutions of Eqs. (1)-(2) in case of the standard FTCS scheme, and the LH method in Experiment 3.
Fig. 11. Graphs of the 𝐶 and ℎ functions in Experiment 3.
the initial and the final time are 𝑡0 = 0.001 and 𝑡𝑓𝑖𝑛 = 0.0011. The initial
conditions are

𝐶(𝑥, 𝑡 = 0) = 1.8 ⋅ |𝑠𝑖𝑛(2𝜋𝑥)| − 1 , (27)
ℎ(𝑥, 𝑡 = 0) = |𝑠𝑖𝑛(2𝜋𝑥)| , (28)

and we set 𝛥𝑥 = 0.0025 and periodic boundary conditions. We will
see that with these parameters, there are valleys similar to cusps in
8

both functions. Since the deep bottom of the valley of 𝐶 has the same
position as the bottom of the ℎ valley, we expect that the interaction
between the diffusion and the surface grow makes the valley of the
surface deeper. The errors as a function of the time step size are
displayed in Fig. 12. The solution provided by the FTCS scheme with
the smallest time step size is used as the reference. One can see in
the last Fig. 13, that the two numerical methods converge to the same
solutions as in the previous three experiments. However, as the graphs
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Fig. 12. Maximum errors as a function of time step size for the numerical solutions of Eqs. (1)-(2) in case of the standard FTCS scheme, and the LH method in Experiment 4.
Fig. 13. Graphs of the 𝐶 and ℎ functions in Experiment 4. The time step size for the LH method is 𝛥𝑡 = 7.8 ⋅ 10−5.
of the functions show, the valleys of both functions are significantly
filled up, thus our expectations are not fulfilled. We note that whether
this phenomenon is real or only the consequence of space discretization
remains an open question.

4. Summary and outlook

In our study we presented and analysed a combined surface growth
model in which a diffusion process served as a source term for the
direct KPZ surface growing. The shape of the grown surface was given
with a nontrivial analytic solution containing logarithmic, tangent and
9

error functions. To make understanding of the solution possible, we
presented a detailed parameter study and explained geometrically with
a few neighbouring islands that formed and grew over time. In the
second part of our study, we used the LH and the usual FTCS numerical
schemes to investigate the model. We found that far from the cusps,
the methods behave as expected: the FTCS was unstable above the
CFL limit while stable and accurate below this. The LH was always
stable, and acceptable solutions could be obtained with orders of larger
time step size than the CFL limit. However, close to the cusps, both
numerical methods failed to converge to the analytic solutions, even
if the difference between them was very small. It is an interesting
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question if there is any numerical scheme that exists which could solve
this problem.

Further work is underway on how an analogue test can be per-
formed by coupling a second-order wave equation to the KPZ equation.
In a previous paper,34 we have already investigated the KPZ equation

ith the travelling wave concept and found that analytical solutions
an be derived for periodic noise. We think that this kind of analytical
ethod can and will be applied to the current PDE system as well.
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