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Libertăţii sq. 1, 530104 Miercurea Ciuc, Romania
Corresponding author:

2Wigner Research Center for Physics,
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Abstract. We investigate diffusion equations which have concentration dependent
diffusion coefficients with physically two relevant Ansätze, the self-similar and the
traveling wave Ansatz. We found that for power-law concentration dependence some
of the results can be expressed with a general analytic implicit formulas for both trial
functions. For the self-similar case some of the solutions can be given with a formula
containing the hypergeometric function. For the traveling wave case different analytic
formulas are given for different exponents. For some physically reasonable parameter
sets the direct solutions are given and analyzed in details.
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1. INTRODUCTION

Diffusion of mass and heat are important transport phenomena which play
relevant role in science and engineering. The corresponding literature has grown
considerably over the past 200 years. Without completeness we just mention some
modern textbooks [1–4].

The simplest diffusion process is the regular one, which is formulated with
well-known parabolic partial differential equation (PDE) in the form of

∂C(x,t)

∂t
=D ·∆C(x,t), (1)

where C(x,t) is the concentration an D is the diffusion coefficient which is a positive
real constant and ∆ represents the Laplace differential operator in arbitrary dimensions
in arbitrary coordinate system. Certain boundary conditions belong to equation (1).
There are definite solutions for finite systems, which often are related to engineering
applications [5, 6].
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Article no. 106 László Mátyás, Imre Ferenc Barna 2

There are numerous works done in the last decades to find analytic solutions
beyond the well-known Gaussian and error functions. The best known is the work of
Bluman and Cole [7] from 1969 who gave an analysis based on a general symmetry
analysis method giving numerous analytic solutions, some of them are expressible
with Gaussian or error functions. As we see they did not present any kind of solutions
which looks similar to ours (and which we present in the following).

In case of infinite horizon the fundamental solution is the Gaussian function
which has application in different areas of science. In the last year we found additional,
physically relevant solutions with the help of the self-similar Ansatz [19, 20] which
are a logical generalization of the fundamental solution. These solutions are the
multiplication of the Gaussian function and the Kummer’s M and Kummer’s U
functions which have an additional free parameter, due to this parameter even decaying
and oscillatory solutions can be given. The applied self-similar Ansatz will be defined
later on in this study in all details. The diffusion coefficient in certain cases may
be considered constant, however there are cases where it may vary [8]. For two
dimensional models important results have been obtained in ref. [9] and for a diffusive-
reactive case in ref. [10]. Environmental aspects of diffusive very fine particles is
discussed in [11] or of dye dispersion in [12]. Diffusive aspects one may find in
certain hydrodynamic equations with dissipation [13, 14].

Diffusion on surfaces is also a significant topic, with possible irregular features
[15]. The chaotic properties of this latter system have been studied in [16]. In case of
similar dynamical systems irregular and anomalous aspects have been studied in refs.
[17, 18].

The general form of diffusion equation comes from a conservation law and
reads,

∂C

∂t
=

∂

∂x

(
D
∂C

∂x

)
. (2)

In case the diffusion coefficient D depends on parameter C, then in general it will
also depend on x. So the case D(C[x,t]) is possible. The diffusion coefficient may
depend on certain physical quantities, and it may vary depending in which phase the
system is: gaseous, fluid or solid phase. In this sense there is a difference between the
dependence of mass diffusion coefficient and heat diffusion coefficient dependence
on the parameter C. The C stands for the density or concentration in case of mass
diffusion and C corresponds to temperature in case of heat diffusion.

The investigation of the regular diffusion is just the first step to understand diffu-
sion process in general, however there are much more complex and difficult diffusion
processes in nature. The diffusion coefficient can have additional dependencies like,
time, space of even a tricky combination of both. (We examined the case when the
diffusion coefficient depend on the function x/t

1
2 ) . In the last years we systemat-

ically investigated of such equations and gave new self-similar solutions together
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with detailed numerical investigations as well. We applied explicit, semi-explicit
and implicit numerical schemes to solve numerically the corresponding PDEs and
compared the evaluated solutions to the exact mathematical ones [21–23]. We found
that in most cases the leapfrog-hopscotch method is the most expedient method to
solve PDEs. These kind of diffusion equations with time, space and ”time-and-space”
dependent diffusion coefficients do have analytic solutions with the similar structure
the fundamental Gaussian solution multiplied by the Kummer’s M and Kummer’s
U functions or with the Whittaker type functions. Due to the extra free parameter
different type of decaying solutions are always exist with different asymptotic. Some
solutions have additional oscillations as well.

On this way we may go a bit further and ask the question what are the properties
of the diffusion process when the diffusion coefficient directly depend on the concen-
tration, in the form of D(C[x,t]). These cases cover certain real non-linear diffusion
processes described with highly non-linear PDEs. In the following we will investigate
this question in details.

2. THEORY AND RESULTS

It is evident that diffusion is in general a three dimensional process beyond
Cartesian symmetry, however we limit our analysis to a single Cartesian space depen-
dent equation. In case we consider the equation of heat transfer, then we have for the
heat flux q =−κTx, where κ is the thermal conductivity. If κ depends on temperature
we have for the energy balance equation,

ρcp
∂T

∂t
=

∂

∂x

(
κ(T ) · ∂T

∂x

)
. (3)

The function of κ(C[x,t]) in principle can be any kind of continuous function
with existing first derivative with respect to the concentration C(x,t).

There are numerous studies available in which various the non-linear diffusion
(or heat conduction) equations were solved with different methods and means and
sometimes analytic solutions are given. Without completeness we cite the most
relevant studies from the last seven decades.

We should start our reference with the work of Fujita [24] from 1952 who
gave analytical solutions when the diffusion coefficient has the form of D(C) =
D(0)/(1−λC).

Later Pattle [25] in 1959 gave solutions with compact support for diffusion from
an instantaneous point source in one, two, or three dimensions. Philip [26] derived
exact solutions for the non-linear diffusion equation when the concentration has the
forms of D(C) =D0/(1−λC),D(C) =D0/(1−λC)2 and D(C) =D0/(1+2aC+
bC2).
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Boyer [27] used a special kind of general self-similar Ansatz with the form of
T (x,t) = U(t)Y (r/R(t)) and solved the non-linear heat conduction equation when
the thermal conductivity was given in the form of κ(T ) = (α+βT +γT 2)−1.

In 1964 Bankoff [28] investigated heat conduction or diffusion with change of
phase and presented numerous methods how the solutions can be derived with series
expansion or integral methods.

Knight and Philip [29] gave solution for the case of D(C) = a(b−C)−2 with
the help of the linearisation of the equation.

Tuck [30] solved the diffusion equation for D(C) = kCn with the constant
source boundary condition with the self-similar solution and presented results with
compact supports.

Munier et al. [31] presented that the self-similar and the partially invariant
solutions are identical and introduced the theory of homology with new type of
solutions. These are related through the Bäcklund transformation. They acknowledge
in the paper, that for n=−1 is an exceptional case, where they met singularities. In
this paper we discuss the case n=−1, and we give an explicit continuous solution.

King [32] solved a cylindrical symmetric non-linear diffusion equation with the
self-similar Ansatz (which is very similar to our) and found solutions which can be
expressed with the Airy functions.

Sadighi and Ganji [33] applied the variational iteration method and presented
analytic results in form of final polynomials.

Hayek [34] presented an exact solution for a nonlinear diffusion equation in a
radially symmetric n-dimensional case in inhomogeneous medium with the help of
the self-similar Ansatz (Eq. 6) which we also apply.

Kosov and Semenov [35] derived new radially symmetric exact solutions of
the multidimensional nonlinear diffusion equation, which can be expressed in terms
of elementary functions, Jacobi elliptic functions, Bessel functions, the exponential
integral and the Lambert-W function.

As an outlook we mention some analytic studies of some non-linear reaction
diffusion equations which are non-linear diffusion equations with one or more extra
source terms.

A group classification of such equation were evaluated by Dorodnitryn [36] in
1982.

The non-classical symmetry reduction was done by Arrigo et al. [37] in 1994.
Vijayakumar [38] presented a study in which he investigated the generalized

diffusion equations (the Fisher, Newell-Whitehead and Fitzhugh-Nagumo equations)
via the isovector approach and showed analytic results as well.

Cherniha and Serov [39] investigated the more general nonlinear diffusion equa-
tions with convection term with the Lie and non-Lie symmetry methods and presented
additional solutions. However non clear-cut formulas are given with parameter studies.
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Reductions and symmetries properties for a generalized Fisher equation with
a diffusion term dependent on density and space was investigated by Chulian et al.
[40].

Liu [41] gave a generalized symmetry classification, and gave the integrable
properties with exact solutions for some nonlinear reaction-diffusion equations.

Qu et al. [42] applied the conditional Lie - Bäcklund symmetries with diffe-
rential constraints and presented explicit solutions for a class of nonlinear reaction-
diffusion equations.

It is important to mention here that this is just the simplest (the phenomeno-
logical) way to introduce non-linearity into the heat conduction equation. We still
apply the Fourier law, where the heat flux is equal to the temperature gradient times
thermal conductivity q =−κTx which has now got an extra temperature dependence
κ(T ). There is a mathematically more rigorous method to derive non-linear heat
conduction equations which go beyond the Fourier law. The heat flux should be
approximated with the higher temporal derivatives of the temperature. If the second
term is considered we arrive to the Cattaneo-Vernotte equation [43–45], more on such
kind of heat conduction equations can be found in the classical work of Gurtin and
Pipkin [46] or in the work of Joseph and Preziosi [47]. Such heat conduction equations
have finite signal propagation velocity properties. An Euler-Poisson-Darboux type
of non-autonomous time-dependent heat conduction equation was derived by Barna
and Kersner [48] which had solutions with a compact support. To describe heat pulse
experiments ”beyond the Cattaneo-Vernotte” models were applied bye Kovács and
Ván [49].

Numerical investigation of Eq. (3) was done by [50] applying the implicit
Euler method. In the following we will investigate this equation with the reduction
mechanism applying two physically relevant trial functions, the self-similar and the
traveling wave Ansätze. It is worth to mention here that this equation is a bit similar
to the porous media equation which has the form of Ut =∆(Um) where m> 1 and
was heavily investigated in former times [51–53]. We have to emphasise that if eq.
(2) has an extra source than we arrive to further scientific fields as are the Fisher
equation [55, 56], Turing model [57] or Swift - Hohenberg equation [58] for nonlinear
optics. The diffusion equation has a wide range of applicability in science, which also
includes the theory of pricing [59, 60].

After dividing by ρcp equation (3) can be also written as a diffusion equation,

∂T

∂t
=

∂

∂x

(
Dh(T ) ·

∂T

∂x

)
, (4)

where Dh = κ/(ρcp) is the heat diffusion coefficient.
Because the heat and mass diffusion equation has the same PDE form, we

simply consider the general dependence D = ζ(C) for (2), which corresponds to
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Dh = ζ(T ) for (4) and we study the following equation:

∂tC = ζ(C)C ·C2
x+ ζ(C) ·Cxx, (5)

where the subscripts mean the partial derivations, respectively. In the following we
study the consequences of such dependence, when the diffusion may vary in terms of
the parameter C.

2.1. SELF-SIMILAR ANALYSIS

Let’s start with the self-similar Ansatz [53, 54, 61] of the form of

C(x,t) = t−αf
( x

tβ

)
= t−αf(η), (6)

where f(η) is the shape function with the reduced variable η, the two self-similar
exponents α and β are responsible for the decay and spreading of the solutions if both
have non-negative values. In the last decade we generalized this kind of Ansatz to
multiple spatial dimension and applied it to the Rayleigh-Bénard convection problems
[62, 63] or to the heated boundary layer equations [64].

We face the question of boundary value problem. In general we can say that
via the free integral constants (c1 and c2) of the self-similar solutions automatically
define some specific boundary value if the temporal variable is fixed to a specific
value (t = t0). It is of course clear that the derived solutions cannot propagate the
general boundary value problem in time.

To make and in-depth analysis the functional form of the concentration depen-
dent diffusion coefficient has to be defined. We start with the most evident case, the
power law dependence:

ζ(C[x,t]) = a ·C(x,t)n where nεR (7)

and the constant a has the role to fix the dimension. (For simplicity we fix its
numerical value to unity.)

If we insert this equation into (5) we get the following equation:

ρcp
(
−αt−α−1f −β t−α−1f ′)= nt−αn−α−2βf ′2+ t−αn−α−2βf ′′, (8)

where prime means derivation in respect to η.
After simplification with t−α one arrives to:

ρcp
(
−αt−1f −β t−1f ′)= nt−αn−2βf ′2+ t−αn−2βf ′′. (9)

Both sides of the equation has the same decay in time if

−1 =−nα−2β, (10)

or α= (1−2β)/n.
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After simplification with t−1, and inserting the value of α in the equation, we
arrive to the ordinary differential equation (ODE) of

ρcp

(
−
[
1−2β

n

]
f(η)−βηf(η)′

)
= nfn−1f ′2+fnf ′′. (11)

Now we have to make case studies for different ns.

2.2. CASE n= 0

If n = 0 we have the differential equation which corresponds to the usual
diffusion equation, where the diffusion coefficient is constant. Although this is
considered a relatively known case, here we present two very recent results for infinite
horizon [65]. Beyond the usual Gaussian solution

C(x,t) =
1√
t
e−

x2

4Dt , (12)

there are further relative simple solutions. There is a countable set of even solution
relative to the spatial coordinate, the most simple one is (beyond Gaussian)

C(x,t) =
1

t
3
2

e−
x2

4Dt

(
1− 1

2D

x2

t

)
. (13)

There is also a countable set of odd solutions relative to the spatial coordinate, a
simple one is

C(x,t) =
x

t
5
2

e−
x2

4Dt

(
1− 1

6D

x2

t

)
. (14)

2.3. CASE n ̸= 0

If n ̸= 0 the equation (11) is more complex. Unlike the regular diffusion
equation, we have now three parameters α,β and n and two of them remains free,
α = (1− 2β)/n. The solution has now the direct form of C(x,t) = t

1−2β
n f(x/tβ).

The obtained ODE (11) has no general closed form solution for arbitrary β and n. We
will see that only for some special fixed β and n combinations give us analytic results.

In the following case n=−1 will be considered with special attention, because
corresponds to a characteristic dependence for dilute systems [8, 10].

2.3.1. Case β = 0

We may start with the case of β = 0 which give us an implicit solution of∫ f(η)

± na2n(2+n)√
−na2n(2+n)(2a2+nρcp− c1)

da−η− c2 = 0. (15)
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It turned out after some algebra, that if all four parameters of the integral
n,c1,ρ and cp are arbitrary rational numbers, there is a definite solution which can be
expressed with the 2F1() hypergeometric function [66](

n(n+2)f(η)1+2n

√
1− 2ρcpf(η)2+n

c1

)
×

2F1

(
1

2
,
1+n

2+n
;1+

1+n

2+n
;
2ρcpf(η)

2+n

c1

)
×(

(1+n)
√
−n(2+n)f(η)2n[2ρcpf(η)2+n− c1]

)−1

−

η− c2 = 0.

(16)

We did not find such a solution in the literature listed above.
Considering the more special case of c1 = 0 the integral can be given in closed

form for general ρcp and n values, so the implicit equation reads as follows:

±
√
2(2+n)f(η)1+2n√

−nf(η)3n+2(2+n)ρcp
−η− c2 = 0 . (17)

As we can see on this result, that in the denominator of the fraction, the argument of
the square root is positive if for certain constraints. One of the possibilities is if n is a
negative number with small absolute value. We rise this latter equation to the second
power and we get

f(η)n =− nρcp
2(2+n)

(η+ c2)
2. (18)

For n=−1 both sides of the equation are positive

1

f
=

ρcp(η+2)2

2
. (19)

This gives for the C(x,t), in case α= (1−2β)/n=−1:

C(x,t) = tf(η) = t · 2

ρcp(x+ c2)2
. (20)

One may arrive to this result by applying to equation (2), the standard change of
variables C(x,t) = A(t) ·B(t), for n = −1. This relation fulfils the equation (3),
however it is divergent for large times.

2.3.2. Case β = 1

For the second case let’s take β = 1 and n=−1 with the solution of

f(η) =
c21

−ρcp(1+ c1η)+ c21c2e
c1η

, (21)
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Fig. 1 – The solution of Eq. (21). The used parameter sets ρ · cp, c1, c2 for the red and green lines are
(1,1,2), and (1,−2,5), respectively.

It is clear that for the case ρcp(1+ c1η) = c1c
2
1e

c1η the shape function becomes
singular at one or two points where the linear equation is touches or intersects the
exponential equation a nice example, when all four parameters have unit values. We
exclude such non-physical solutions from our analysis. It is also clear that such
solutions arise when the ρ and cp are much larger than the initial conditions c1 and c2.

Figure 1 shows the solutions of Eq. (21) for the shape functions for two different
parameter sets.

We analyze the function (21) by evaluating the derivative of it

∂f

∂η
=

c21(ρcpc1− c31c2e
c1η)

(−ρcp(1+ c1η)+ c21c2e
c1η)2

. (22)

As one can see, this function has an extreme value if

ρcpc1 = c31c2e
c1η. (23)

This means that this extrema will occur at the value of η

η∗ =
1

c1
ln

ρcp
c21c2

. (24)

One can see, that if

ρcp > c21c2, η∗ > 0, (25)

ρcp < c21c2, η∗ < 0. (26)
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Fig. 2 – The solution of Eq. (27), the presented C(x,t) function is for α = 1,β = 1,ρ = 1, cp =
0.1, c1 = 15, c2 = 0.7, parameter set, respectively.

Figure 2 however presents the C(x,t) total solution in the form of:

C(x,t) =
1

t

(
c21

−cpρ(1+ c1ρ(x/t)+ c21c2e
c1x
t )

)
. (27)

As a third mathematical case we found a solutions for the parameter pair of
β =−1/2 and n=−2. Unfortunately, the result is a multi-valued implicit formula
with real and complex parts. We tried to tune the parameters c1, c2 and ρcp but cannot
found any solution which could be interpreted physically e.g. has some reasonable
asymptotic for infinite time and space coordinates.

There are exotic but existing real materials which have temperature dependent
heat conduction coefficients. As a first example we may mention magnetically aligned
single wall carbon nanotube films [68] where the heat conduction coefficient has
linear temperature dependence between 50 and 250 K. Our second example is the
bulk semiconductor at large temperature gradient. The authors approximate the heat
flux with a sum of higher spatial derivatives of the temperature

q =−κ0(T )Tx−κ1(T )Txxx−κ2(T )−κ3(T )(Tx)
3, (28)

where the first coefficient is κ0 = 1/T [69]. In our present model we cannot take into
account the higher terms.

2.4. TRAVELING WAVE ANALYSIS

The second physically relevant trial function which we use is the traveling wave
Ansatz in the form of:

C(x,t) = g(x+ ct) = g(ω), (29)
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to avoid further misunderstanding we use a different notation for the shape function
which is g and for the reduced variable which is ω now.

To make and in-depth analysis the functional form of the concentration depen-
dent diffusion coefficient has to be defined. Let’s try the most evident case, the power
law dependence first:

κ(C[x,t]) = a ·C(x,t)n where n, bεR\0, (30)

n is a free exponent and a is responsible for the proper physical dimension of the
thermal conductivity. (The numerical value of a is set to unity again.) After the usual
algebraic steps we arrive to the ODE of

ρcpcg
′ = a

(
ngn−1g′2+gng′′

)
. (31)

With the help of Maple 12 we can derive a general implicit formula which contains an
integral ∫

g(ω)

aZn

c1a+Zρcpc
dZ−ω− c2 = 0. (32)

Luckily, for n=−1,0 and 1 exist closed form solutions. For n= 0 we get back the
regular diffusion equation with the exponential front solution, which is nonphysical.
For n = 1 the solution is the sum of the Lambert W function [66] with the pure
argument of ω plus a function of ω. All together the solution is divergent at large x
and t arguments. For completeness we mention that in the work of Kosov and Semenov
[35] a completely different solution is presented where an exponential function has an
argument proportional to [x4/t+Lambert W(x4/t)]. We cannot transform the two
solutions into each other with finite algebraic steps, so our solution is different to [35].
(One may find more about Lambert W function in [67]. ) Luckily, for n = −1 the
solutions become simpler and we get

g(ω) =
e
−ω+c2

c1a

c1ρcpce
−ω+c2

c1a −1
. (33)

Using the definition of the traveling wave Ansatz the final form of the concen-
tration reads:

C(x,t) =
e
− (x+ct)+c2

c1a

c1ρcpce
− (x+ct)+c2

c1a −1

. (34)

Figure 3 shows the C(x,t) concentration function Eq. (34) for the set of parameters
c2 = 0,ρ · cp = 1, c= 1, c1 = 10,a= 0.1.

As a second class of functions we may consider a temporal and spatially periodic
dependence of κ(T [x,t]) = bsin(T [x,t]) unfortunately we cannot derive any solution
is a reasonable closed form. Additionally we tried the Lorenzian form of κ(T [x,t]) =

(c) RJP69(Nos. 5-6), ID 106-1 (2024) v.2.4r20231030 *2024.8.1#a95d7659
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Fig. 3 – The concentration function C(x,t) of Eq. (34) for the parameter set c2 = 0,ρ · cp = 1, c =
1, c1 = 10,a= 0.1.

a
1+T (x,t)2

and the exponential form of κ(T [x,t]) = b ·Exp(−T [x,t]) in vain, there
are no analytic closed form available.

3. SUMMARY AND OUTLOOK

We investigated the highly non-linear diffusion equation where the diffusion
constant (now it is rather a parameter) directly depends on the concentration. Two
type of trial functions were used and different functional form were analyzed. We
found physically relevant analytic solutions which have power law decays at infinite
times. In the future - as a natural generalization - we plan to investigate reactions
diffusion equations which are diffusion equations with extra source terms on the right
hand side.
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