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Abstract: In this paper, we define and investigate a system of coupled regular diffusion equations in
which each concentration acts as a driving term in the next diffusion equation. Such systems can be
understood as a kind of cascade process which appear in different fields of physics like diffusion and
reaction processes or turbulence. As a solution, we apply the time-dependent self-similar Ansatz
method, the obtained solutions can be expressed as the product of a Gaussian and a Kummer’s
function. This model physically means that the first diffusion works as a catalyst in the second
diffusion system. The coupling of these diffusion systems is only one way. In the second part of
the study we investigate mutually coupled diffusion equations which also have the self-similar trial
function. The derived solutions show some similarities to the former one. To make our investigation
more complete, different kinds of couplings were examined like the linear, the power-law, and the
Lorentzian. Finally, a special coupling was investigated which is capable of describing isomerization
with temporal decay.

Keywords: diffusion; self-similar solution

MSC: 35K57; 35Cxx; 60J60

1. Introduction

Transport processes have gained significant interest both for science and in engineering
applications. The simplest one being heat conduction in solids or the regular diffusion of
particles. Without additional couplings to other processes, these two related phenomena
alone are well-understood and do not attract much interest. (The literature on diffusion
(or heat conduction) is immense; therefore, we only mention some recent monographs and
studies [1–10]).

So, more elaborate and compound processes have to be coupled together and must be
investigated simultaneously to match the logic of today’s science. In other words the objects
examined within science are becoming more and more complex. One strategy is to couple
as many elementary processes together as possible up to the reasonable limit. A good
example of this method is the Fermi–Pasta–Ulam–Tsingou model, where a large number of
weakly linear oscillators were coupled, examined and finally highly non-linear effects like
deterministic chaos or solitons were found as relevant new types of physics [11,12]. We
are now following this path also. In the following paper, we define and analyze models
which are systems of coupled regular diffusion equations. Firstly, we define a model where
the first diffusion propels the second one and the second serves as source or driving term
in the third one and so on. We call this model the diffusion cascade. (This phrase was
already used in the scientific literature which we mention in detail in the next section).
In our former studies, we analyzed the regular diffusion equation with the self-similar
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Ansatz in depth and found new analytic solutions which are available on the whole regular
axis instead of the usual Fourier ones which are defined on a finite interval only [13,14].
Recently, we also published analytic solutions to the non-linear diffusion equation [15]. As
will be seen, the derived solutions become more and more compound, containing more and
more terms, and showing a larger and larger number of oscillations and internal structure.
Numerical methods for solving diffusion equations have also improved a lot in recent
years [16–18].

There is a high degree of generalization possible, but we only mention one model.
Cascade processes are well-known in many fields of science like high-energy particle collisions
with each other or with ordinary matter [19,20], in turbulence [21], in biochemistry [22], and
in ecology [23]. Cascade processes have strong connection to stochastic processes [24] as well.
The phrase diffusion cascade was defined and used to describe Spreading Phenomena in Blog
Network Communities [25] in 2012 and later by [26].

In the second part of the study we present a type of mutually coupled diffusion, or
rather reaction–diffusion equations [27], which also have closed-form solutions derived
with the self-similar Ansatz. Such models exist in different fields of science like mathemati-
cal biology [28], pattern formation [29], or even in plasma physics [30,31]. The possibility of
describing isomerization is important for oil refining products— in which normal paraffins
may be converted to isoparaffins [32]— or in the design of less expensive and flexible
electronic devices [33].

The paper presents certain novel functions as solutions for the cascading diffusion
system, the two-component time decaying isomerization, and the two-component diffu-
sion system with cross diffusion, where the system is not necessarily constrained by a
finite boundary.

General Aspects of Diffusion for Infinite Horizon

Before we present our results, we briefly sketch our solution method. We start with
the usual diffusion (or heat conduction equation) for one Cartesian coordinate:

∂C(x, t)
∂t

= D
∂2C(x, t)

∂x2 , (1)

with the self-similar Ansatz [34–36] in the form of C1(x, t) = t−α · f
(

x
tβ

)
, where η = x

tβ is
the reduced variable. (This Ansatz can be generalized even for two Cartesian variables [37]).
After the usual algebraic steps we arrive to the ODE of

−α f − η

2
f ′ = D f ′′, (2)

with the constraint of β = 1/2 and α which can be arbitrary or real. We can derive the most
general solution in the form of

f (η) = e−
η2
4D · η ·

(
c1M

[
α − 1,

3
2

,
η2

2D

]
+ c2U

[
α − 1,

3
2

,
η2

2D

])
, (3)

using the original variables, and the final concentration reads as follows:

Cα(x, t) = e−
x2

4Dt ·
(

x
tβ

)
·
(

c1M
[

α − 1,
3
2

,
x2

2Dt

]
+ c2U

[
α − 1,

3
2

,
x2

2Dt

])
. (4)

where M and U are the Kummer’s functions [38], and c1 and c2 are the real integration
constants. The properties of Equation (3) were exhaustively studied in our former studies.
Depending on the numerical values of the first parameter, the Kummer’s functions can
have four different kinds of properties, which were also detailed in our earlier publications.
We showed that, with a positive integer αs, the η · M(, , η2) function is reduced to finite odd
order polynomials, and for a positive half-integer, αs the η · U(, , η2) function is reduced
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to even-order polynomials [39]. Such solutions have power-law temporal decay, which is
physically required. As an example, we define the first three odd and even polynomials:

η · M
(

1 − α,
3
2

,
η2

2D

)
, α = 1, η, (5)

η · M
(

1 − α,
3
2

,
η2

2D

)
, α = 2, η − η3

6D
, (6)

η · M
(

1 − α,
3
2

,
η2

2D

)
, α = 3, η − η3

3D
+

η5

60D
, (7)

and

η · U
(

1 − α,
3
2

,
η2

2D

)
, α = 1/2, 2

√
D, (8)

η · U
(

1 − α,
3
2

,
η2

2D

)
, α = 3/2, −

√
D +

1
2
√

D
η2, (9)

η · U
(

1 − α,
3
2

,
η2

2D

)
, α = 5/2,

3
√

D
2

− 3η2

2
√

D
+

η4

8D3/2 . (10)

These will be important in the following analysis. Unfortunately, Kummer’s function
with the quadratic argument cannot form a complete set of orthogonal functions, and
therefore cannot be used for a proper series expansion.

2. Theory and Results

In the main part of our study we define two types of coupled diffusion equations,
solve them, and analyze the obtained results.

2.1. Diffusion Cascades

We introduce our iterative PDE system of

∂C1(x, t)
∂t

= D1
∂2C1(x, t)

∂x2 , (11)

∂C2(x, t)
∂t

= D2
∂2C2(x, t)

∂x2 + a12
C1(x, t)

t
, (12)

∂C3(x, t)
∂t

= D3
∂2C3(x, t)

∂x2 + a13
C1(x, t)

t
+ a23

C2(x, t)
t

, (13)

. = . (14)

. = . (15)

where the Dis are the diffusion coefficients which are all positive real numbers, the aijs are
the coupling constants, and the Cis are the investigated concentration functions with the
satisfactory smoothness. To obtain analytic solutions, as a first step, we truncate the result
after the the second equation. This means that we consider only Equations (11) and (12).
Such a situation describes the diffusion of two components, where the first component acts
as a catalyst in the system, facilitating the production of the second component. Recent
results from catalytic diffusion have been published in [40].

We apply the self-similar Ansatz

C1(x, t) = t−α · f
(

x
tβ

)
, C2(x, t) = t−γ · g

(
x
tβ

)
, (16)

where η = x
tβ is the reduced variable. All three concentrations have the form of Equation (4).

Consider Equation (12) first with a finite odd α = 2 source term and derive the
corresponding ODE
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−γg − η

2
g′ = Dg′′ + a12e

η2
4D

(
η − η3

6D

)
. (17)

The solution is

g(η) = e−
η2
4D · η ·

(
c1M

[
1 − γ,

3
2

,
η2

4D

]
+ c2U

[
1 − γ,

3
2

,
η2

4D

])
− a12ηe−

η2
4D (D − 1/6η2)

D(γ − 2)
, (18)

so we essentially return to the usual Gaussian times Kummer’s function minus the original
source or driving term. This is easy to see on this ODE, but far from being simple in the PDE
system level in Equations (11)–(13). Note, that γ ̸= 2 which means that only a different kind
of solution can form a new linear combination. Figure 1a shows the g(η) shape functions
for different parameter sets. Figure 1b, however, presents a final possible C2(x, t)

(a) (b)

Figure 1. (a) The g(η) shape functions of Equation (18) for three different parameter sets
{D, c1, c2, a12, γ}. The black (just the source term), red (with Kummer’s M), and blue (with Kummer’s
U) curves are for {1, 0, 0, 1, 2}, {1, 2, 0, 1, 5}, and {1, 0, 1, 0.5, 1.5}, respectively. (b) The C2(x, t) is for
the parameter set of {1, 0, 1, 0.5, 1.5}.

Our experience shows that, for a closed solution, both diffusion coefficients should be
equal to each other. So different diffusion processes with different coefficients cannot be
coupled together with the self-similar Ansatz.

Fixing the numerical value of γ and c1, c2, even and odd solutions can be defined. Due
to the linearity of Equation (17), it is easy to see that any kind of Gaussian-times-finite
polynomial source term can be considered and an analytic solution can be derived. The
opposite argument is also true, namely that a complicated solution with numerous terms
one after another in a diffusion equation can be considered as a finite series of coupled
diffusion processes in which everything in the previous solution is the source of the next.

2.2. Coupled Diffusion Equations

We defined a cascades as a one-way coupling of equations and the corresponding
processes together. The number of equations (considering different modes) can be increased
as desired. Here, we consider mutually coupled diffusion equations, with specific coupling
terms, which can be called a reaction–diffusion equation system (just to define the used
phrases correctly, diffusion equations have no extra term over the second-order spatial
derivative, drift–diffusion equations have first-order spatial derivative terms, and reaction–
diffusion equations have extra source terms containing no derivation. Using this logic,
drift–reaction–diffusion equations can also be considered as the most general case). We
start with the simplest case, where only two equations are coupled:

∂C1(x, t)
∂t

= D1
∂2C1(x, t)

∂x2 + F(C1(x, t), C2(x, t)),

∂C2(x, t)
∂t

= D2
∂2C2(x, t)

∂x2 + G(C1(x, t), C2(x, t)), (19)
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where F() and G() are, in principle, any kind of continuous function. There are numerous
physically relevant but complicated couplings available between two diffusion equations
like the complex Ginsburg–Landau [41,42] or the Gross–Pitaevskii [43,44] equations, after
separating the real and the complex parts of the solution. We will see in the next section that
the self-similar Ansatz of Equation (16) radically reduces the possible couplings between
the two processes. The simplest case is when

F(C1, C2) =
a · C2

t
, G(C1, C2) =

b · C1

t
, (20)

In the reduced ODE system we consider that D1 = D2, however, the two external
self-similar exponents can still be different α ̸= γ and β = 1/2. The solutions are quite cum-
bersome but the next two abbreviations, p = 1− γ

2 − α
2 and q = (

√
4ab − 2αγ + γ2 + α2)/2,

can be given in the closed form in a compact way:

f (η) = η · e−
η2
4D ·

(
c1M

[
p − q,

3
2

,
η2

4D

]
+ c2M

[
p + q,

3
2

,
η2

4D

]
+

c3U
[

p − q,
3
2

,
η2

4D

]
+ c4U

[
p + q,

3
2

,
η2

4D

])
, (21)

g(η) =
η

2a
· e−

η2
4D ·

(
c1M

[
p − q,

3
2

,
η2

4D

]
[γ − α + 2q] + c2M

[
p + q,

3
2

,
η2

4D

]
[γ − α − 2q]+

c3U
[

p − q,
3
2

,
η2

4D

]
[γ − α + 2q] + c4U

[
p + q,

3
2

,
η2

4D

]
[γ − α − 2q]

)
, (22)

where c1, c2, c3, and c4 are the normal real integration constants. At first glance, Equations (21)
and (22) look difficult to analyze and understand. The key parameter which essentially defines
the global properties of the solutions is the first parameter of both Kummer’s functions which
we notate now as p ± q. Let us analyze this parameter; for us, the finite polynomial solutions
of both Kummer’s function are relevant to Equations (5)–(10).

The formula is symmetric in the interchange of the parameters a, b and in α, γ. It is clear
that if a · b > 0 then the expression under the square root is always real for any α or γ because
(α − γ)2 > 0. For α = γ = 1, we obtain the simplest form of the solution

f () ∝ c1M(−
√

ab, , ) + c2M(+
√

ab, , ) + c3U(−
√

ab, , ) + c4U(+
√

ab, , ). (23)

We know from previous work that if first parameter of the Kummer’s M function is a
negative integer, we obtain a finite polynomial resulting in a solution that oscillates and
decays in time and space. This can be fulfilled with (1) if a = b ∈ N or (2) if a and b are
square numbers.

Additional constraints which should be fulfilled are c2 = c3 = c4 = 0. Other possible
physically relevant solutions are when the first parameter in the Kummer’s U functions is a
negative half-integer, so the square of a · b should be a half integer which can be fulfilled
for infinite fixed a and b pairs. In general we can say that, for any kind of real α and β, we
can find a and b pairs that have a negative integer as the first parameter for the Kummer’s
M or a negative half integer for the Kummer’s U function.

Figure 2 presents a shape function f (η) and the corresponding concentration C1(x, t)
distribution for Kummer’s M functions for a physically relevant temporal and spatial decay-
ing property.

In the opposite case (a · b < 0), two possibilities can happen:

• The first parameter of the Kummer’s functions p ± q is purely imaginary ∈ iR when
1 − α

2 − γ
2 = 0. In the simplest and symmetrical case when α = γ = 1/2 due to the

Gaussian prefactor, both the real and the imaginary parts of the solutions containing
either M(, , ) or U(, , ) functions have decaying properties for asymptotic temporal
and spatial variables independently from the sign of the parameter. Figure 3 presents
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the imaginary part of such a shape function and the imaginary part of the final
concentration for a given set of parameters. For an asymmetric general case, when α
or γ becomes negative then the corresponding C1,2(x, t) solution becomes divergent
at infinite times due to the temporal prefactors of tα or tδ.
The other diffusion functions, however, have the proper decaying property.

• p ± q ∈ Z is a general complex number (and not purely imaginary) that occurs when
1 − γ

2 − α
2 ̸= 0. To obtain solutions with the proper asymptotic, the real part of the

parameter should be negative and the corresponding self-similar exponents which
are responsible for the decay should be positive (α, γ). Unfortunately, for a quite
general set of parameters, all the terms of Equations (21) and (22) must be studied
with great care.

(a) (b)

Figure 2. The shape function f (η) of Equation (22) and the final concentration C1(x, t) for the set of
parameters D = 1, c1 = 1, c2 = c3 = c4 = 0, a = 4, b = 9, α = 1/2, γ = 1. (a) represents f (η) and
(b) shows C1(x, t), respectively.

In both complex cases, the Kummer’s functions become an infinite complex polynomial
in η.

Except for the forced harmonic oscillator problem (due to the Euler formula), the com-
plex solutions to real ODEs are hard to understand and explain. Generally, the following
statement is true: separately, both the real and the imaginary parts of the resulting functions
are solutions for the corresponding ODE.

(a) (b)

Figure 3. The imaginary part of the shape function f (η) in Equation (22) and the imaginary part of
the final concentration C1(x, t) for the set of parameters D = 1, c2 = 1, c1 = c3 = c4 = 0, a = − 4,
b = 1, α = 1, γ = 1. (a) represents Im[ f (η)] and (b) shows Im[C1(x, t)], respectively.

For completeness, we have to mention that closed-form solutions exist for some special
forms of coupling terms like

F(C1, C2) =
a · C2 · ηn

t
, G(C1, C2) =

b · C1 · ηn

t
, (24)
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if and only if n = 1, 2,−1,−2, α = γ and D1 = D2, the solutions look similar and can be
expressed with Kummer’s, Whittaker’s [38], or the Heun [38,45] functions.

If α = γ and D1 = D2, even for the Lorentzian function

F(C1, C2) =
a · C2

t(1 + η2)
, G(C1, C2) =

b · C1

t(1 + η2)
, (25)

Maple 12 can evaluate analytical solutions containing the Heun Confluent functions. We
think that these kind of coupling source terms have little practical interest hence we skip their
detailed analysis here. We may go further and try to couple three or even more diffusion
equations together with different couplings terms. Our experience shows that, in general,
even for three-part coupled diffusion equations the most general self-similar solutions and
formulas become tediously long and opaque. In some special cases (when all remaining
free self-similar exponents are set to 1/2) and the first two diffusion equations are coupled
and the sum of the two diffusion equations is considered as a source term in the third one,
then the solution remains transparent. A detailed analysis of this could be the topic of a
subsequent study.

2.3. The Time-Decaying Isomerization

In this Section, we study the following coupled equations which describe the isomer-
ization process [46,47]. In chemistry, isomerization is the process in which a polyatomic ion,
molecule, or molecular fragment is transformed into an isomer with a different chemical
structure. The general relevant equations are presented in [48]. Relative to that system,
in this subsection, we neglect the cross diffusion and we have made a slight modification
regarding the reaction rate. At this point we consider a reaction where the reaction rate
changes in time. Here, we follow a decaying reaction rate k/t. With spatial extension, the
reaction–diffusion equations read

∂C1(x, t)
∂t

= D1
∂2C1(x, t)

∂x2 − k
t
(C1(x, t)− C2(x, t)),

∂C2(x, t)
∂t

= D2
∂2C2(x, t)

∂x2 +
k
t
(C1(x, t)− C2(x, t)), (26)

where k/t is a decaying reaction rate. Applying the transformation (16) and as a first step
taking D1 = D2 = D, one arrives at the following coupled ODE system:

−α f (η)− 1
2

η
d f
dη

= D
∂2 f
∂η2 − k( f (η) + g(η)),

−γg(η)− 1
2

η
dg
dη

= D
∂2g
∂η2 + k( f (η)− g(η)). (27)

The solutions to these equations—with the following two notations p = 1 − γ
2 − α

2
and q′ = (

√
4k2 − 2αγ + γ2 + α2)/2—are
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f (η) = ηe−
η2
4D

(
c1M

[
p − q′ + k,

3
2

,
η2

4D

]
+ c2M

[
p + q′ + k,

3
2

,
η2

4D

]
+

c3U
[

p − q′ + k,
3
2

,
η2

4D

]
+ c4U

[
p + q′ + k,

3
2

,
η2

4D

])
, (28)

g(η) =
η

2k
· e−

η2
4D · (c1M

[
p − q′ + k,

3
2

,
η2

4D

]
[γ − α + 2q′] +

c2M
[

p + q′ + k,
3
2

,
η2

4D

]
[γ − α − 2q′] + c3U

[
p − q′ + k,

3
2

,
η2

4D

]
[γ − α + 2q′] +

c4U
[

p + q′ + k,
3
2

,
η2

4D

]
[γ − α − 2q′]). (29)

The parameter dependence is very similar to the former model, with some differences.
Here, we study certain specific cases. If α = γ = 1, p = 0 and q = k. In this case, the
Kummer functions have the following behavior

M
[

p − q′ + k,
3
2

,
η2

4D

]
= M

[
0,

3
2

,
η2

4D

]
= 1 (30)

U
[

p − q′ + k,
3
2

,
η2

4D

]
= U

[
0,

3
2

,
η2

4D

]
= 1, (31)

in which M
[
2k, 3

2 , η2

4D

]
is divergent and U

[
2k, 3

2 , η2

4D

]
has a less usual behavior fora large

η. This means that we can choose the constants c1 and c3 as the initial and boundary
conditions required, and c2 and c4 should be set to zero to avoid divergences.

The next situation is when α and γ is larger than one. A specific case is α = γ = 2. Note
that these self-similar parameters cause a singularity in the origin (t = x = 0). The shape
function f and the related solution C(x, t) for this specific case can be seen in Figure 4.

(a) (b)

Figure 4. The shape function f (η) (a) and C(x, t) (b) of Equation (28) for the set of parameters
D = 1, c1 = 1, c2 = c3 = c4 = 0, k = 1, α = 2, γ = 2, respectively.

For a larger α = γ, the first parameters in both Kummer’s functions may be negative
which gives further relevant oscillatory and decaying solutions like Equations (5)–(10).
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2.4. Coupled Diffusion Equations Obtained via the Flick’s Law

In the case of binary diffusion, in certain cases, the cross diffusion term may be
important. In this situation, the diffusion of one of the components may involve the
transport of the other one too [49]. This situation is characterized by nonzero cross diffusion
coefficients. Correspondingly, we investigate the diffusion systems in which the coupling
comes from the Fick’s law, like

q1 = D11∇C1 + D12∇C2,

q2 = D21∇C1 + D22∇C2. (32)

At this point, we should mention, that the stability condition for this system of coupled
equations is D11 · D22 − D12 · D21 > 0 [49]. We restrict our study only for cases when this
stability condition holds.

With the usual substitution into the corresponding continuity equations we arrive to
the coupled diffusion equations of:

∂C1(x, t)
∂t

= D11
∂2C1(x, t)

∂x2 + D12
∂2C2(x, t)

∂x2 ,

∂C2(x, t)
∂t

= D21
∂2C1(x, t)

∂x2 + D22
∂2C2(x, t)

∂x2 , (33)

using our standard Ansatz of C1 = t−α f (η) and C2 = t−δg(η), the next coupled ODE
system can be easily derived:

−α f − η

2
f ′ = D11 f ′′ + D12g′′,

−δg − η

2
g′ = D21 f ′′ + D22g′′, (34)

with the constraint of α = δ ∈ R. We found that carrying out an exhaustive analysis
with Maple 12 was tedious and only provided closed analytic solutions for the special
sets parameters of like {D11 = D22, D12 = D21} where α = 0,±1/2,±1. (For some other
αs, e.g., one-third or one-quarter, formulas exist but contain additional formal integration
operations). The most important but tedious general formula for α = 1/2 can be found in
Appendix A of the present study. Here, we just give the result for the set of parameters
α = 1/2, D11 = 3, D12 = 1/3,

f (η) = g(η) = c1e−
3η2
32 + c2e−

3η2
40 − 5c3er f

(
I
√

6η

8

)
√

6e−
−3η2

32 +

2c3er f

(
I
√

30η

20

)
√

30e−
−3η2

40 − 2c4er f

(
I
√

6η

8

)
√

6e−
−3η2

32 + c4er f

(
I
√

30η

20

)
√

30e−
−3η2

40 , (35)

where erf() means the error function [38]. Figure 5 shows the imaginary part of the shape
function of Equation (35) and the final C1(x, t) as well. Here, we find the usual quick
temporal and spatial dependence.
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(a) (b)

Figure 5. (a) The imaginary part of the Equation (35) for of α = 1/2, D11 = 3, D12 = 1/3, and for
c1 = c2 = c3 = 0, c4 = 1 (b) the ℑ[C1(x, t)] for the same set of parameters, respectively.

3. Summary and Outlook

We investigated different kinds of coupled diffusion equations with the self-similar
Ansatz. As an initial system, we defined one-way coupling between numerous regular
diffusion equations, where the later equation has the former one as a source. We found that
the Gaussian function times a Kummer’s function with an arbitrary order can be a source
term with numerous quickly decaying oscillations. This property can understood from the
linearity of the diffusion equation.

Secondly, we investigated two mutually coupled diffusion equations and found an-
alytic solutions for some different kind of couplings. The linear, the power-law, and the
Lorentzian couplings were examined. The linear coupling gave as the usual Gaussian times
the Kummer’s function solution. However, the four independent parameters expand our
understanding of the solutions. Real and complex solution can appear. It is worth mention-
ing that some sets of parameters give us physically relevant finite solutions with proper
asymptotic decays at infinite times and as a final third model we analyzed a time-decaying
isomerization process where the derived results are similar to the coupled diffusion case.
The parameter dependence were exhaustively analyzed in all investigated models.

In principle we could define a further model where the diffusion coefficient is temper-
ature dependent.

In the future we plan to investigate drift–diffusion equations for semiconductors,
which couple the concentrations of electrons and holes [50].

A second possible form of investigation is to consider the traveling wave Ansatz
C(x, t) = f (x ± ct) and create some kind of sinusoidal coupling between the diffusion
fields. The solutions will be proportional to the Mathieau functions [38,51].
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Appendix A

For a better transparency we introduce the following four abbreviations:
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Dp =

√
− 1

D1 + D2
, Dm =

√
− 1

D1 − D2
, dp = − 1

4(D1 + D2)
, dm = − 1

4(D1 − D2)
, (A1)

when α = 1
2 we get:

f (η) = g(η) =
1

2DpDm(D2
1 − D2

2)

(
2c1D2

2DmDpedmη2 − 2c1D2
1DmDpedmη2−

−2c2D2
2DpDmedpη2

+ 2c2D2
1DpDmedpη2

+

c3
√

πedmηer f
[
]
Dmη

2

]
Dp[D1 + D2] + c3

√
πedpηer f

[
Dpη

2

]
Dm[D1 − D2] +

+2c4
√

πedmηer f
[

Dmη

2

]
D2Dp[D2

1 − D2
2 ] + +2c4

√
πedpηer f

[
Dpη

2

]
D2Dm[D2

1 − D2
2 ]

)
. (A2)
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