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Abstract: In this study, five different time-dependent incompressible non-Newtonian boundary layer
models in two dimensions are investigated with the self-similar Ansatz, including external magnetic
field effects. The power-law, the Casson fluid, the Oldroyd-B model, the Walter fluid B model, and
the Williamson fluid are analyzed. For the first two models, analytical results are given for the
velocity and pressure distributions, which can be expressed by different types of hypergeometric
functions. Depending on the parameters involved in the analytical solutions of the nonlinear ordinary
differential equation obtained by the similarity transformation, a vast range of solution types is
presented. It turned out that the last three models lack self-similar symmetry; therefore, no analytic
solutions can be derived.

Keywords: non-Newtonian fluid; self-similar method; boundary layer; MHD flow; time-dependent
solution

PACS: 47.10.ab; 47.10.ad; 67.57.De

MSC: 76A05

1. Introduction

The scientific field of classical fluid mechanics is vast and cannot be summarized in a
few finite arbitrary books. If we restrict ourselves to non-Newtonian fluids or boundary
layer flows, the relevant literature is still remarkably large. The fundamental physics of
such fluid flows can be found in introductory textbooks such as [1–5]. In our previous
publication on time-dependent self-similar solutions of compressible and incompressible
heated boundary layer equations [6], we collected the most relevant literature in the field,
which we omit here. Some analytic results are also available for stationary non-Newtonian
boundary layers, for example, [7–9].

Today, there is a growing need to study the motion of non-Newtonian fluids, which
are often found in industrial applications and in modeling many manufacturing processes
(heat exchangers, pharmaceuticals, food, and paper). All fluids for which Newton’s law
cannot describe the shear stress rate relation are called non-Newtonian fluids. They can
be characterized by formulas of a highly diverse nature. Without completeness, we will
investigate five different non-Newtonian fluid models in our study; these are the following:
The first is the non-Newtonian power-law model, which describes the viscosity of time-
independent flow behavior for both shear thinning (or pseudoplastic) and shear thickening
(or dilatant) cases (see [1,4]). This model is used in vast engineering applications, for
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instance, lubricants, polymers, and slurries [5]; this model is well suited for numerical and
analytical studies of fluid flows [8].

The second can be directly derived from the usual Newtonian fluids. This is the widely
used viscosity model for viscoplastic non-Newtonian behavior and is named the Casson
fluid model. Fluids that behave like a solid when the shear stress is less than the yield stress
applied to a liquid start to deform when the shear stress is greater than the yield stress [10].
Numerical studies regarding the Casson fluid one may find in [11]. The system of unsteady
MHD fluid that flows through a porous medium is discussed in [12].

Our third model is the non-Newtonian Oldroyd-B fluid, which is used in the literature
for the rheological characterization of a type of viscoelastic fluid. Oldroyd applied the
principle that stresses in a continuous medium can only arise from deformations and cannot
change if the material is only rotated [13].

The fourth is the Walters-B model, which was proposed by Walters for viscoelastic
fluids [14]. It is a generalization of the Oldroyd-B model and describes the behavior of
fluids mainly used in food and food processing technologies.

The final model is the Williamson fluid model, which can also describe the viscoelas-
tic shear-thinning properties of non-Newtonian fluids [15]. In Williamson’s fluid model,
the effective viscosity should decrease infinitely as the shear rate increases, which is ef-
fectively infinite viscosity at rest (no fluid motion) and zero viscosity as the shear rate
approaches infinity.

The actual existing literature on non-Newtonian boundary layers is enormous. There-
fore, we cannot give a general overview; we can mention some relevant recent publications
in the right place in this study.

To analyze the variation in flow characteristics of a fluid in a magnetic field, an
additional magnetic term is added to the momentum equation of the boundary layer
equation system so that the system can describe the magnetic effects.

The aim of this paper is twofold: firstly, to derive analytic results for the non-
Newtonian boundary layer equations and secondly, to investigate how an additional
stationary magnetic field changes these effects.

We examine the five types of non-Newtonian behavior given above. A similarity
transformation transforms the governing equations into a system of ordinary differential
equations. We analyze the cases in which the fluid flow rate functions can be analytically
given by the method used. In these two cases, we give the velocity distributions in
two space dimensions and point out the effect of each parameter.

2. Theory and Results

In the following, we present our various non-Newtonian boundary layer models
with an additional magnetic field after some introductory remarks. This gives readers a
hint of how the models were derived and introduced. As the main point, we investigate
boundary layers. Therefore, our starting point is the pioneering work of Prandtl [16], who
used scaling arguments and derived that specific terms of the Navier–Stokes equations are
negligible in boundary layer flows. Some years later, Blasius [17] gave the solutions of the
steady-state, incompressible, two-dimensional, laminar boundary layer equation forms on
a semi-infinite flat surface parallel to a constant unidirectional flow. Here, we study the
uniform two-dimensional flow of an incompressible, viscous, electrically conducting fluid
in a tension plate placed in a uniform velocity ambient fluid. Assuming a magnetic field
B0 perpendicular to the plate for small magnetic Reynolds number, the induced magnetic
field justified for MHD flow is neglected, i.e., Rem = µ0σVL ≪ 1, where µ0 is the magnetic
permeability, σ is the electrical conductivity of the fluid, V is the characteristic velocity, L is
the characteristic length scale of the fluid, and M is the characteristic length scale. It is
also assumed that the external electric field is zero and that the electric field polarization is
negligible. The next step is introducing the non-Newtonian viscous terms in the impulse
equation and modifying the term in the remaining Navier–Stokes equation after simplifying
the boundary layer. This is performed by hand, just writing down the power-law, Oldroyd-
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B types, the Walters-T type, or even the Williamson type non-Newtonian viscosity. Finally,
an additional term is needed if an external magnetic field is present. Hartmann first derived
this in 1937 [18] for the theory of laminar flow on an electrically conductive liquid in a
homogeneous magnetic field. In recent years, the same term was used by Waqas [19] and
Lone [20].

Secondly, we have a few statements about the boundary conditions of our future
solutions. In this study, we generally obtain our results as solutions of second-order
ordinary differential equations, meaning we obtained three free real integral constants:
c1, C1, and C2. The solutions are a linear combination of the regular and the irregular
solutions. When the boundary conditions are given at the boundary of the sheet and far
from the boundary at the boundary layer edge, we can obtain the similarity solutions for
the velocities and pressure as a function of the space and time in analytic forms.

Unfortunately, with this self-similar Ansatz, not all the mathematically and physically
possible boundary conditions can be described. The good news is that physically relevant
solutions with proper asymptotic temporal and spatial decay can be defined and studied.
This is the shortcomings of the method.

2.1. Power-Law Viscosity

Under our assumptions, the MHD equations for the steady two-dimensional flow in
the boundary layer for a fluid with power-law viscosity read as follows:

∂u
∂x

+
∂v
∂y

= 0, (1)

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+ m

∂

∂y

(∣∣∣∣∂u
∂y

∣∣∣∣n−1 ∂u
∂y

)
+ σB2

0u, (2)

∂p
∂y

= 0, (3)

where the dynamical variables are the velocity components u(x, y, t), v(x, y, t), the fluid
pressure p(x, y, t), B0 = const is the magnetic induction, and σ is the electrical conductivity.
Additional physical parameters are ρ, m, n, the fluid density, consistency parameter, and the
power-law index, respectively. Consider Figure 1 to fix our system’s geometrical relations.

Figure 1. Defining the directions and the velocity components of the investigated system.

The boundary conditions for the fluid flow with constant velocity Ue and using a
continuously moving permeable surface are as follows:

u(x, y = 0, t) = Uw, v(x, y = 0, t) = Vw, u(x, y → ∞, t) = Ue. (4)

Here, we take Ue, Uw, and Vw as constants.
The temporal decay of the strong solutions of the power-law type of non-Newtonian

fluids for variable power-law index was mathematically proven by Ko [21]. Flow reversal
effects in an expanding channel for this type of viscous fluid were analyzed by [22]. A non-
iterative transformation method for an extended Blasius problem describing a 2D laminar
boundary layer with power-law viscosity for non-Newtonian fluids was developed by
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Fazio [23]. Pater et al. [24] solved the stationary power-law equations by the one-parameter
deductive group theory technique. We mention at this point that the stationary boundary
layer equations can be reduced to the third-order non-linear differential equation, which is
called the Blasius equation and has extensive literature; see [4,25].

To obtain the solutions to the system (1)–(3), we apply the following self-similar Ansatz
for u, v and p [25]:

u(x, y, t) = t−α f (η), v(x, y, t) = t−δg(η), p(x, y, t) = t−γh(η), (5)

with the argument η = x+y
tβ of the shape functions. All the exponents α, β, γ, δ are real

numbers. Solutions with integer exponents are called self-similar solutions of the first kind;
non-integer exponents generate self-similar solutions of the second kind [25].

It is necessary to remark that if we add the regular heat conduction mechanism
to (1)–(3), the boundary layer equations exclude the self-similarity; therefore, using the
Ansatz of (5), one obtains a contradiction among self-similar exponents.

The shape functions f , g, and h could be any arbitrary continuous functions with
existing first and second continuous derivatives and will be derived later on. The phys-
ical and geometrical interpretation of the Ansatz was exhaustively analyzed in former
publications [26]; therefore, we skip it here.

The main points are that α, δ, γ are responsible for the decay rate, and β is for the
spreading rate of the corresponding dynamical variable for positive exponents. Negative
exponents mean physically irrelevant cases, blowing up and contracting solutions. The
numerical values of the exponents are considered as follows:

α = δ = n/2, β = 1 − α = 1 − n/2, γ = n. (6)

Exponents with numerical values of one-half mean the regular Fourier heat con-
duction (or Fick’s diffusion) process. One-half values for the exponent of the velocity
components and unit value exponent for the pressure decay are usual for the incompress-
ible Navier–Stokes equation [26]. Note that the value of γ is responsible for the decay of
the pressure field.

Applying (6), the derived ordinary differential equation (ODE) system reads as

f ′ + g′ = 0, (7)

ρ
[
−n

2
f −

(
1 − n

2

)
η f ′ + f f ′ + g f ′

]
= −h′ + mn f ′′| f ′|n−1 + σB2

0 f , (8)

h′ = 0, (9)

where the prime means derivation concerning variable η. Equations (7) and (9) can be
integrated to obtain f + g = c1 and h = c2. However, the dynamic variable under
consideration is the velocity component u, which is f . From (8), the derived ODE is
the following:

mn
ρ

f ′′| f ′|n−1 +
[(

1 − n
2

)
η − c1

]
f ′ + K f = 0, (10)

where K = (ρn/2 + σB2
0). The constant c1 can be determined from possible boundary

conditions applied to the fluid flow problem.
Here, we give analytic and numeric solutions to the flow Equations (7)–(9):

(i) First, we consider the case B0 = 0. Equation (10) has analytic solutions only for the
cases of n = 1, 0, and −1.

For the Newtonian fluid case, when n = 1, and other parameters (c1, m, ρ) are general,
the solution reads as

f (η) = C1M
[

ρ

2
,

1
2

,−ρ(η − 2c1)
2

4m

]
+ C2U

[
ρ

2
,

1
2

,−ρ(η − 2c1)
2

4m

]
, (11)
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where M(, , ) and U(, , ) are the Kummer’s M and Kummer’s U functions [27], and C1
and C2 stand for the usual integration constants. The parameter c1 shifts the maxima of
the shape function, and m, the consistency parameter (which is positive), just changes
the full width at half the function’s maximum. The larger the numerical value of m, the
broader the shape function. The third parameter, the density of the fluid (which must
also be positive), is the most relevant parameter of the flow, which, of course, meets our
physical intuition. Figure 2 shows four different velocity shape functions for different fluid
densities. It is essential to mention that for density 0 < ρ, the shape function has a global
maxima in the origin and a decay to zero (larger densities mean quicker decay). However,
for 1 < ρ, the shape function also shows additional oscillations. The final velocity field has
the asymptotic form of u(x, y = 0, t) = t−

1
2 f
(

x
t1/2

)
. For completeness, we give the entire

formula for u as well:

u(x, y, t) =
1

t1/2

C1M

ρ

2
,

1
2

,−
ρ
[
(x+y)

t1/2 − 2c1

]2

4m

+ C2U

ρ

2
,

1
2

,−
ρ
[
(x+y)

t1/2 − 2c1

]2

4m


, (12)

where c1, C1, and C2 are subjected to the boundary conditions. We remark that this case
was investigated in [6]. Figure 3 shows the velocity field of v(x, y = 0, t) for a parameter set.
The slight oscillation and the quick decay are clear to see. It is interesting to mention here
that during our investigations using the self-similar Ansatz, we regularly obtain solutions
that contain Kummer’s M and Kummer’s U functions for hydrodynamic processes like the
Bénard-Rayleigh convection [26] or even for regular diffusion equations [28].

Figure 2. Four different velocity shape functions for Equation (11). The black, blue, red, and green
curves are for ρ = 0.5, 1, 2, and 5, respectively. All additional parameters are the same for all
four curves (C1 = 1, C2 = 0, c1 = 0 and m = 2).

For n = 1, the velocity u for long times has a power-law decay u ∼ 1
tα ∼ 1

t1/2 .
In the case n = K = 0, the solution is a trivial constant f = c2.
There are analytic solutions available for n = −1; unfortunately, not for the general

case where all the other three parameters (c1, ρ, m) are entirely free. The constant c1 should
equal zero, and the ratio of ρ/m should have some special values. The existing possibilities
are not so many.

In the following, we present some solutions that came from our numerical experimen-
tal experiences:
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Figure 3. The velocity distribution function projection for y = 0 for the density of ρ = 2. All other
parameters are the same as below.

For ρ = 1 and arbitrary integer or rational m, we obtain the following implicit relation
for the solutions:

ln(η)− ln[ f (η)]− ln
{

C1U
[
−1,

3
2

,
1

4m
f (η)2

]
+ M

[
−1,

3
2

,
1

4m
f (η)2

]}
− C2 = 0. (13)

If the first parameters of both Kummer’s functions are non-positive integers, the series
becomes finite:

M
[
−1,

3
2

,
1

4m
f (η)2

]
= 1 − 2

3m
f (η)2,

U
[
−1,

3
2

,
1

4m
f (η)2

]
= −3

2
+

1
m

f (η)2, (14)

considering that C2 > 0 and C̃2 = ln(C2) after some trivial algebraic steps, we obtain(
C̃2C1

m
− 2C̃2

m

)
f (η)3 +

(
C̃2 −

3C̃2C1

2

)
f (η)− η = 0. (15)

Three different velocity shape functions are presented in Figure 4 for various parameter
sets to show the global and general properties of the solution Equation (15).

One can see in Equation (15) that if η = 0, then f (η = 0) = 0 is a solution of the
equation. Further possibilities give the following rearrangement:[(

C̃2C1

m
− 2C̃2

m

)
f (η)2 +

(
C̃2 −

3C̃2C1

2

)]
f (η) = 0. (16)

This yields

f (η = 0) = ±

√(
3C̃2C1

2
− C̃2

)
/
(

C̃2C1

m
− 2C̃2

m

)
. (17)
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Figure 4. The implicit velocity shape functions of Equation (15) for three different parameter sets
(C1, C̃2, m). The black, red, and blue curves are for (0, 0.25, 0.7), (2.4, 0.3, 1.3), and (2.4, 0.3, 10).

It shows that for η = 0, there are one or three corresponding values to function f (η).
In the following, we try to find the constraints on the parameters that separate the two
cases. If we consider the inverse function f (η) = y, we have

η =

(
C̃2C1

m
− 2C̃2

m

)
y3 +

(
C̃2 −

3C̃2C1

2

)
y. (18)

The derivative of this function is

dη

dy
= 3

(
C̃2C1

m
− 2C̃2

m

)
y2 +

(
C̃2 −

3C̃2C1

2

)
. (19)

If this expression has always the same sign, the function is monotonous, and then
there is just one single root η(y = 0) = 0 (i.e., f (η = 0) = 0). If this derivative may change
the sign, then multiple roots are possible. The inverse function is not monotonous and may
have three roots if there are real roots of the equation of the derivative dη/dy = 0. This
means the following condition: (

3C̃2C1
2 − C̃2

)
(

C̃2C1
m − 2C̃2

m

) > 0. (20)

Figure 4 shows two implicit solutions of Equation (15) for three different parameter
sets. Note that Equation (15) is a third-order equation. We may obtain multi-valued
solutions. If the parameter m is much smaller than the two integration constants, then
single-valued solutions emerge as well. Whether the multi-valued solutions have any
physical significance is not yet clear, but this property may indicate the existence of finite
oscillations or eddies. Figure 5 shows the projected velocity fields (this means y = 0) for
single- and double-valued cases. The decrease of the velocity field with time is visible. For
the sake of completeness, we give the final form of the velocity field, which reads as(

C̃2C1

m
− 2C̃2

m

)
t3/2 f

(
x + y
t3/2

)3
+

(
C̃2 −

3C̃2C1

2

)
t1/2 f

(
x + y
t3/2

)
− x + y

t3/2 = 0. (21)

There are analytic solutions available for ρ = 3 and for arbitrary real m and c1 in the
implicit form of

η

f (η)
+

C1e
9 f (η)2

4m

3 f (η)
−

C1 · erf
[

3
2

√
− 1

m f (η)
]

2m
√
− 1

mπ

− 2c1

3 f (η)
− C2 = 0, (22)
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where erf() stands for the usual error function. For more information please consult the
basic handbook of [27].

Equation (22) clearly shows that for C1 = 0, we obtain the trivial linear function as a
solution. Figure 6 presents the solutions of Equation (22) for three different parameter sets.

(a) (b)

Figure 5. The implicit velocity distribution u(x, t) evaluated from Equation (22) for two different
parameter sets (C1, C̃2, m). (a) figure is for (1, 4, 0.4) and (b) figure is for (0, 2.5, 0.7), respectively.

The implicitplot command of Maple 12 was used to evaluate the presented functions
in Figure 6. As we can see, multivalued functions are presented. This is because the implicit
function is second-order in f(eta).

The result functions increase strongly (or decrease in the case of a negative branch)
very close to the origin and for larger arguments on a nearly horizontal plateau. The
general structure of the solution is relatively stable; even a tenfold change in the parameters
does not change the overall feature of the derived curve. To have a better overview of the
properties of the solution, Figure 7 presents the usual velocity projection of u(x, y = 0, t)
for a given parameter set from an unusual point of view. The physically relevant rapid
decay over time is again clearly visible.

Figure 6. The implicit velocity shape functions of Equation (22) for three different parameter sets
(C1, C̃2, c1, m) with ρ = 3. The black, red, and blue curves are for (1, 1, 1, 0, 1), (3, 5, 0, 0, 0.2), and
(13, 11, 4, 10), respectively.

(ii) In the second part of our analysis, we investigate the solutions when the magnetic
induction is not equal to zero (B0 ̸= 0). Even now four different cases exist: n = 2, 1, 0,
and −1. We have to examine them one by one.

First, we consider the dilatant case n = 2. Equation (10) is reduced to

2m
ρ

f ′′ f ′ + K f = 0, (23)
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multiplying by f ′, we obtain a total derivative, which can be integrated, giving us the ODE of

2m
3ρ

f ′3 +
1
2
(ρ + σB2

0) f 2 + c0 = 0. (24)

Figure 7. The implicit velocity distribution field when the parameters are (C1, C̃2, c1, m) and
(3, 5, 0, 0.2), with ρ = 3.

First considering the c0 = 0 simpler case, the ODE can be directly integrated and gives
multiple solutions: there is a trivial one of f = 0, there are two complex conjugated solutions
that we skip, and a relevant real one. After some algebraic manipulation, it reads as

f = −
6ρ(ρ + σB2

0)(η − c1)
3

216 m
, (25)

which is a third-order parabola in the variable of η. The final velocity distribution is

u(x, y, t) = −
6ρ(ρ + σB2

0)(x + y − c1)
3

216 m t
, (26)

which is divergent at t = 0 for large spatial coordinates and has quick t−1 decay in time in
general. Figure 8 shows the graph of Equation (26) for a given parameter set.

For c0 ̸= 0, there is a formal implicit solution containing an integral:

η −
∫ f (η) 2m

[−6ρm2(a2ρ + a2σB2
0 + 2c0)]1/3

da − c1 = 0. (27)

Unfortunately, it cannot be evaluated for general arbitrary parameters (ρ, m, σ, B2
0 , c0).

The second case is n = 1, the Newtonian fluid case:

f (η) = C1 · M
[

ρ

2
+ σB2

0,
1
2

,−ρ(η − 2c1)
2

4m

]
+ C2 · U

[
ρ

2
+ σB2

0,
1
2

,−ρ(η − 2c1)
2

4m

]
. (28)

Note the interesting feature that both the density and the magnetic induction give
contributions to the first parameter of Kummer’s functions. The density ρ and the square
of the magnetic induction B2

0 are always positive; the electric conductivity σ is also positive
for regular materials. (With the need for completeness, we have to note that so-called
metamaterials can have negative electrical conductivity, but we will skip that case now.
More on materials can be found in [29]. For such media, the first parameter of Kummer’s
function would be negative, which would mean divergent velocity fields, which contradicts
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energy conservation.) The external magnetic field enhances the first positive parameter
of Kummer’s functions for regular materials, which means more oscillations and quicker
decay. The shape function, or the final velocity distribution u(x, y, t), is very similar to
what was presented in Figures 2 and 3. If the first parameter of Kummer’s M function
(ρ/2 + σB2

0) is larger than one, the larger the magnetic induction, the larger the number
of oscillations. This is true for the density and for the electric conductivity as well. Such
shape functions are presented in Figure 9.

Figure 8. The projection of Equation (26) u(x, y = 0, t) for the parameter set of (ρ, m, σ, B0, c1) equal
to (1, 5, 10, 1, 0), respectively.

Figure 9. Five shape functions of Equation (28) for different parameter sets. The effect of the
magnetic induction is investigated. The black, red, blue, and green lines are for (C1, C2, c1, ρ, m, σ, B2

0)

with numerical values of (1, 0, 0, 1, 1, 1, 0.1), (1, 0, 0, 1, 1, 1, 0.5), (1, 0, 0, 1, 1, 1, 1), (1, 0, 0, 1, 1, 1, 2), and
(1, 0, 0, 1, 1, 1, 4), respectively.
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The third case is n = 0, which is the simplest one. The original ODE of Equation (10)
is reduced to

η f ′ + σB2
0 f = 0, (29)

with the trivial solution of
f (η) = C1η−σB2

0 . (30)

The velocity distribution has the form of

u(x, y, t) = C1

(
x + y

t

)−σB2
0
. (31)

The pressure field is a pure constant as well. These are simple power-laws. Therefore,
we skip to present additional figures.

The last case, n = −1, is again the most complicated one. There is no analytic solution
available when all parameters are arbitrary. There is, however, a special case when the last
term in Equation (10) is zero, which defines the constraint of ρ = 2σB2

0. If we additionally
fix c1 = 0, we obtain the following solution:

f (η) = ±1
3

√
6m
3ρ

arctan

( √
6mρη√

−6mρη2 + 2mC1

)
+ C2, (32)

where arctan() is the usual inverse trigonometric arcus tangent function. It can be easily
shown that the solution has a compact support, and the function is only defined in the

region of −
√

C1
3ρ ≤ η ≤

√
C1
3ρ . Note that the smaller the fluid density, the larger the accept-

able velocity range if c1 remains the same. The larger the integral constant c1 parameter,
the larger the available velocity range. The second integral constant C2 just shifts the
solution parallel to the y-axis. Figure 10 shows the solution for three different parameter
sets. Figure 11 presents the final typical velocity distribution v(x, y = 0, t) ∼ t

1
2 f ( x

t3/2 ). The

quick temporal decay is clear to see. Note that the prefactor t
1
2 makes the time backpropa-

gation impossible for negative values.

Figure 10. The velocity shape functions of Equation (32) for three different parameter sets (C1, C2, m, ρ)

with c1 = 0. The black, red, and blue curves are for (1, 0, 1, 1), (15, 0.2, 2, 1), and (0.4, 2, 1, 0.4), respectively.

For the sake of completeness, we provide solutions for the pressure as well. The ODE
of the shape function is trivial with the solution of

h′ = 0, h = c2. (33)



Mathematics 2024, 12, 3863 12 of 18

Therefore, the final pressure distribution reads as

p(x, y, t) = t−γ h(x, y, t) =
c2

tn , (34)

which means that the pressure is constant in the entire space at a given time, and the time
decay can be different from the velocity field.

Figure 11. The velocity distribution that corresponds to (32) for the parameter set (C1, C2, ρ, m) is
(0, 0, 5, 3).

2.2. Casson Fluid

We investigated additional fluid models to perform an even more comprehensive
analysis and study how the transients happen in non-Newtonian boundary layers.

The first in our line is the simplest one, the so-called Casson fluid model; now the
boundary layer equation has the form of

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+

(
1 +

1
λ

)
µ

∂2u
∂x2 + σB2

0u, (35)

where λ is the Casson parameter. Note that for λ → ∞ the term goes over the regular
Newtonian viscous term. (All five physical parameters ρ, λ, µ, B0, and σ should have
positive real values, and the λ ̸= 0 is also evident.) Sochi analyzed the variational approach
for the flow of Casson fluids in pipes [30]. The blood flow through a stenotic tube was
modeled by the Casson fluid by Tandon et al. [31].

We still consider the self-similar Ansatz of (5) for the three dynamical variables. After
the usual algebraic manipulations, we arrive at the non-linear second-order ODE for the
shape function of the horizontal velocity component f (η) in the next form:

ρ

(
− f

2
− η f ′

2

)
=

(
1 +

1
λ

)
µ f ′′ + σB2

0 f , (36)

In this model, all four self-similar exponents have fixed values: α = β = δ = 1/2, γ = 1,
which is usual for the Newtonian viscous fluid equations [26]. The derived solutions are
mainly different from the first model; therefore, we have to give a detailed analysis in the
following. With our usual mathematical program package, Maple 12, we can easily derive
the solution in closed form:
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f (η) = e
− ρη2

4µ( λ+1
λ ) · η ·

C1M

−2σB2
0 − ρ

2ρ
,

3
2

,
ρη2

4µ
(

λ+1
λ

)
+

C2U

−2σB2
0 − ρ

2ρ
,

3
2

,
ρη2

4µ
(

λ+1
λ

)
. (37)

It is important to note, at this point, that the derived formula shows some similarities
to the results of the regular diffusion equations [28], which were exhaustively discussed in
our former studies. The situation is, however, a bit different here. Thanks to the positivity
of all parameters, the exponent sign is always negative (a real Gaussian function), which
dictates a rapid decay for large arguments η and for any additional parameter sets. The
crucial parameter that qualitatively classifies the solutions is the numerical value of the
first parameter of Kummer’s functions. We can distinguish three cases:

• −
(

2σB2
0−ρ

2ρ

)
< 0, which is equivalent to 2σB2

0 > ρ (with the stipulation of ρ ̸= 0). The

solutions have oscillations. If this parameter is a negative integer, the infinite series of
Kummer’s function will break down into a finite-order polynomial. The smaller the
parameter, the larger the number of oscillations.

• −
(

2σB2
0−ρ

2ρ

)
= 0, which is equivalent to 2σB2

0 = ρ (with the stipulation of ρ ̸= 0). Now

both Kummer’s M and Kummer’s U functions are unity, and the solution is reduced to
the Gaussian function times η function, which has odd symmetry. This is the limiting
solution between the oscillating and the non-oscillating solutions.

• −
(

2σB2
0−ρ

2ρ

)
> 0, which is equivalent to 2σB2

0 < ρ (with the stipulation of ρ ̸= 0). The

larger the parameter, the smaller the peak value of the solution and the quicker the decay.

Figure 12 presents five shape functions of Equation (37) for five different fluid densities;
for a clear comparison, all the other parameters remain the same. The larger the density ρ,
the quicker the decay and the smaller the global maximum of the shape functions.

In general, the ρ/[4µ(λ + 1)/λ] factor is responsible for the extent (or the full width
at half maximum (FWHM) value of the solution). The larger this parameter is, the quicker
the decay will occur. For changing the Casson parameter in the physically relevant positive
range λ > 0, we found no remarkable change in the solutions; this is because the λ+1

λ (is
almost unit) factor appears in the Gaussian together with two other parameters;

The role of magnetic induction is also important. Figure 13 shows the effect of the
magnetic induction B2

0 , where all the other parameters are unchanged. If the first parameter
of Kummer’s M function is smaller than unity, the solutions have a global maximum and a
quick decay; if this parameter is larger than the unity, then the larger the magnetic induction
the larger the oscillations of the solutions.

Most of these solutions have odd symmetry. It can be easily seen because the Gaussian
is an even function, η is an odd function, and the series of Kummer’s M and U functions,
which have a quadratic argument, are again even infinite or finite series, which, together,
give odd symmetry. However, using the series expansion, it can be shown that if the first

parameter of Kummer’s U (only for U) function −
(

2σB2
0−ρ

2ρ

)
is a negative half-integer,

then the solutions obtain even symmetry. The properties of such kinds of solutions are
exhaustively discussed in [28].
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Figure 12. Five shape functions of Equation (37) for different parameter sets. The role of the fluid
density ρ is investigated. The black, red, blue, green, and grey lines are for (C1, C2, ρ, λ, µ, σ, B2

0)

with numerical values of (1, 0, 8, 1, 1, 1, 1), (1, 0, 4, 1, 1, 1, 1), (1, 0, 2, 1, 1, 1, 1), (1, 0, 1, 1, 1, 1, 1), and
(1, 0, 1/2, 1, 1, 1, 1), respectively.

Figure 13. Five shape functions of Equation (37) for different parameter sets. The role of the
magnetic induction B2

0 is investigated. The black, red, blue and green lines are for (C1, C2, ρ, λ, µ, σ, B2
0)

with numerical values of (1, 0, 1, 1, 1, 1, 0.1), (1, 0, 1, 1, 1, 1, 0.5), (1, 0, 1, 1, 1, 1, 1), (1, 0, 1, 1, 1, 1, 2), and
(1, 0, 1, 1, 1, 1, 4), respectively.

To complete our analysis, we will also provide solutions for the pressure. The ODE of
the shape function is trivial with the solution of

h′ = 0, h = c2. (38)
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Therefore, the final pressure distribution is

p(x, y, t) = t−1 h(x, y, t) =
c2

t1 , (39)

which means that the pressure is constant in the entire space at a given time, and the
temporal decay follows the simple inverse law.

2.3. Oldroyd-B Model

The next fluid flow model is the Oldroyd-B model [13], where the momentum equation
is the following:

∂u
∂t

+ u
∂u
∂x

+ v
∂v
∂y

+
λ1

ρ

(
u2 ∂2u

∂x2 + 2uv
∂2u

∂x∂y
+ v2 ∂2u

∂y2

)
= −1

ρ

∂p
∂x

+
ν

ρ

∂2u
∂y2

+
νλ2

ρ

(
u

∂3u
∂x∂y2 + v

∂3u
∂y3 − ∂u

∂y
∂2u
∂y2 − ∂u

∂y
∂2v
∂y2

)
+ σB2

0u. (40)

Even without the external term with the magnetic induction, the self-similar Ansatz
of (5) leads to a contradiction among the four self-similar exponents, indicating that the
system has no self-similar symmetry with power-law time decay. The main cause of the
lack of symmetry is the appearance of the third spatial derivatives together with the second
ones. When terms with second spatial derivatives and terms with third spatial derivatives
appear together in one equation, then the exponents of the explicit time dependence cause
contradictions that cannot be solved (e.g., t−α−2β should be equal to t−α−3β ), and on the
other side, an additional equation—usually the continuity equation—dictates the β = 1/2
condition. In such cases, the dynamical system has no self-symmetry. So, one cannot see if
a PDE system has self-symmetry in such cases.

The Oldroyd-B model was exhaustively investigated in the last decades from many
points of view; optimal time decay rates for the higher order spatial derivatives of solutions
were analyzed by Wang [32]. The global well-posedness of the model was investigated by
Elgindi and Liu [33]. The global existence results of some Oldroyd-B models were proven
by [34]. Finally, we mention the review paper of [35], which summarizes most of the known
mathematical results.

2.4. Walters’ Liquid B Model

The third possible non-Newtonian candidate is the so-called Walters’ Liquid B model [14],
where the momentum equation has the form of

∂u
∂t

+ u
∂u
∂x

+ v
∂v
∂y

= −1
ρ

∂p
∂x

+
µ

ρ

∂2u
∂y2 +

k0

ρ

(
u

∂3u
∂x∂y2 + v

∂3u
∂y3 − ∂u

∂y
∂2u

∂x∂y
+

∂u
∂x

∂2u
∂y2

)
+ σB2

0u. (41)

Practically, we observed the same property as in the previous case: the existence of the
terms with the third spatial partial derivatives destroyed the self-similar symmetry, causing
controversy beyond the self-similar exponents. Therefore, no solutions can be derived with
this Ansatz.

Flow and heat transfer of Walter’s liquid model with stretching walls were applied to
hemodynamics by Misra, Shit, and Rath [36]. Khrisna [37] studied the Hall and ion slip
effects on MHD laminar flow in a Walter’s-B fluid.

2.5. Williamson Fluid

As the last model, we took the Williamson fluid [15] with the equation of motion of
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∂u
∂t

+ u
∂u
∂x

+ v
∂v
∂y

= −1
ρ

∂p
∂x

+
∂

∂y

[
µ

ρ

∂u
∂y

+ µ
Γ
2

(
∂u
∂y

)2
]
+ σB2

0u. (42)

We cannot present analytical results even if this model (again due to the third-order
partial spatial derivative term) lacks the property of time-dependent self-similar symmetry.
Malik et al. [38], however, numerically studied the effects of variable thermal conductivity
and heat generation/absorption on Williamson fluid flow and heat transfer. The swim-
ming effects of microbes in the blood flow of nano-bioconvective Williamson’s fluid were
investigated by Rana et al. [39]. We found these recent results, which are worth mentioning.

3. Summary and Outlook

In our study, we investigated five different time-dependent non-Newtonian boundary
layer problems using the self-similar approach. We show that analytical results exist and
give them. For the non-Newtonian power-law fluid, we found different types of solutions
depending on the value of the power-law exponent, which can be expressed by Kummer’s
functions or other implicit functions. The effects of density and other parameters in the
nonlinear ordinary differential equation have been investigated. The effects of the magnetic
field can be described by including an additional magnetic term in the equation. Analytical
solutions have also been found for such cases. In some cases, only implicit solutions can
be derived, which is unusual in our experience. For non-Newtonian Casson fluid flow,
the effect of the Casson parameter is also analyzed. For the other three non-Newtonian
cases, the Oldroyd-B model, Walter’s Liquid B model, and Williamson fluid, the self-
similar transformation (5) cannot be performed; contradictions arose among the self-similar
exponents. This is not usual for dissipative systems and is due to the third-order spatial
derivative term. All five models might be investigated with the traveling wave Ansatz in
the far future because the spatial and temporal symmetry shift is always present in these
equations. The equations have no explicit temporal or spatial dependence. As an additional
not-so-well-known reduction function, we may mention the traveling profile [40] Ansatz,
which interpolates between the self-similar and the traveling wave properties.

4. Conclusions

This paper investigates the time-dependent non-Newtonian boundary layer equations
with and without the influence of a magnetic field. In the absence of a magnetic field,
the horizontal velocity’s shape function can be represented using Kummer functions,
whose properties significantly influence the system’s dynamics. When a magnetic field
is introduced, the velocity component can typically still be expressed using Kummer
functions, although with parameters modified by the field’s presence. In certain cases—
depending on the specific non-Newtonian characteristics—simpler functional forms may
emerge. Other dynamical variables are either directly related to this velocity component or
possess more straightforward expressions.
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