New results from PHENIX on energy loss and direct photons

Zimanyi Memorial Workshop July 2-4, 2007 – Budapest

G. David, BNL

Upgrades, new possibilities

High $p_T \pi^0$ -s in Au+Au – birds-eye view

Run-1, 130GeV Au+Au:

- First observation of large π^0 suppression above 2GeV (PRL 88, (2002)) ("world data" interpolation as reference)

Run-2, 200GeV Au+Au:

- spectra up to 14GeV, suppression is constant (pQCD reference)

Run-4, 200GeV Au+Au + Run-3 p+p

- spectra up to 18GeV, suppression is constant (measured reference)

Run-4, 62GeV Au+Au

- "fast track analysis", smaller suppression than at 200GeV ("world data fit" as reference)

Run-5, 200GeV Cu+Cu and p+p:

- suppression commensurate to 200GeV Au+Au at similar Npart

Run-4, 62GeV Au+Au R_{AA} revisited (Au+Au data points are the same!)

- suppression very similar to 200GeV if measured p+p is used as ref.

π^0 in 200GeV Au+Au and Cu+Cu

Suppression pattern similar for comparable N_{part} (despite very different geometry – limitations of ϕ -integrated measurements)

Compare this to...

4

π^0 R_{AA} in 62GeV Au+Au – world data reference used

Zimanyi 75 Memorial Workshop, Budapest – July 3, 2007 – G. David, BNL

 π^0 R_{AA} in 62GeV Au+Au – measured reference used

(the medium is almost the same(?))

7

π^0 R_{AA} in 62GeV Au+Au – world data vs PHENIX data

Same experiment, same acceptance, many systematic errors the same! ₈

What do we want to learn from this – and what precision is needed? / 1

Using $\pi^0 R_{AA}$ in 200GeV Au+Au to constrain parameters in theories

9

Zimanyi 75 Memorial Workshop, Budapest – July 3, 2007 – G. David, BNL

PQM, C. Loizides

What do we want to learn from this – and what precision is needed? / 2

10

Zimanyi 75 Memorial Workshop, Budapest – July 3, 2007 – G. David, BNL

What do we want to learn from this – and what precision is needed? / 3

WHDG, William Horowitz

 \bigcirc

Zimanyi 75 Memorial Workshop, Budapest – July 3, 2007 – G. David, BNL

Precision, physics theorists and experimentalists

Our field is very rich, and doesn't cease to surprise us:

- some much anticipated signals of the QGP (like thermal photons, medium modifications of vector mesons, γ-jet correlations, ...) are somewhat lagging behind for technical reasons
- other less anticipated signals became the rage overnight, sparking tremendous theoretical activity (like hadron suppression, parton scaling of flow, "baryon anomaly", charm suppression and flow, J/Psi suppression commensurate to SPS, ...)
- still we are far from a coherent picture: none of the results is powerful enough to reject all but one explanation
- "Powerful enough" usually means "precise". But "precision" is not a goal for itself. **The goal is to understand the physics,** and sometimes it is best served by pushing, say, an inclusive spectrum to the limits and beyond, other times may be better served with a less precise, but more complex and more constraining measurement (double differential, correlation, ...)

No single recipe here: this is decided by the intense interaction between theory and experiment, which was excellent in the past years. Let's keep it that way! **(()**

One way out: differential quantities

 \bigcirc

Zimanyi 75 Memorial Workshop, Budapest – July 3, 2007 – G. David, BNL

High p_T direct photons in Au+Au – birds-eye view

Run-2, 200GeV Au+Au:

- spectra up to 14GeV, excess (double ratio) consistent with NLO pQCD
- integrated R_{AA} (using NLO pQCD as reference) consistent with 1 (QM'04, PRL 94, 232301 (2005))

Run-4, 200GeV Au+Au:

- spectra up to 18GeV
- double ratio at mid-pT above T_{AA} scaled NLO pQCD, but below it at high pT (?) (Hard Probes 2006, Nucl. Phys. A **783** (2007) p359 and p569)

Run-5, 200GeV p+p:

- spectra 5-23GeV, shape different from NLO pQCD, new fit to the data

Run-4, 200GeV Au+Au R_{AA} revisited (200GeV photon data still the same):

- suppression in photon R_{AA} at high p_T, even beyond isospin-effects?

Run-4, 62GeV

- photon R_{AA} with NLO pQCD as it did in step 2... analyzing 62GeV p+p

First: direct photon excess, compared to NLO pQCD

Run-2, 200GeV Au+Au

Integrated photon R_{AA} (using NLO pQCD)

Consistent with unity at all centralities

Measurement up to 14GeV/c

Dominated by hard scattering (>6GeV/c) and unaffected by the medium

 \rightarrow T_{AB} scaling is a valid concept

Direct γ in p+p, PHENIX – data vs theory, old vs new ⁽³⁾

Zimanyi 75 Memorial Workshop, Budapest – July 3, 2007 – G. David, BNL

Direct γ in p+p, PHENIX – comparison w/ other data and pQCD

What Is The p+p Reference? Calculation vs Data

Photons in 200GeV p+p (Run-5) 0.5pT favored, but even this misses the shape

Black circles: Run-5 data divided by an empirical fit.Blue lines: NLO pQCD (different both in magnitude and shape)

Zimanyi 75 Memorial Workshop, Budapest – July 3, 2007 – G. David, BNL

Photon R_{AA} central, 200 GeV with fit to p+p data

One of the big sensations at Quark Matter 2006: our direct photon R_{AA} in Au+Au

Zimanyi 75 Memorial Workshop, Budapest – July 3, 2007 – G. David, BNL

Comparisons to predictions

•

Direct Photon Au+Au Vs_{NN} = 200GeV, 0-10%

- Turbide et al.
 - Jet photons + pQCD + thermal
 - AMY formalism for jet-quenching of fragmentation photons
 - Data systematically below theory
 - Phys. Rev. C72 (2005) 014906 + private communication

- F. Arleo
 - pQCD photons only
 - High-p_T suppression due to isospin effect, shadowing, and energy loss
 - BDMPS for jet-quenching
 - JHEP 0609 (2006) 015

Why isn't the γR_{AA} unity at high p_T ?

Evolution of the gluon structure function?

"Isospin" effect (different charge squared content of p and n)?

Note

- pions care about color, not charge
- pion x_T is 2p_T/ sqrt(s),
 photon x_T is 2p_T/z*sqrt(s)

Your favorite model here ©

Yet another dreaded explanation: it could be an experimental error so we started looking for a cross-check

> Eskola,Kolhinen,Ruuskanen Nucl. Phys. B**535**(1998)351

Fig. 1. The nuclear ratios $R_i^A(x, Q^2)$ for individual parton flavours $i = g, u_V, \bar{u}, \bar{d}, s, c$ of a lead nucleus A = 208 as functions of x at fixed values of $Q^2 = Q_0^2 = 2.25$ GeV² and $Q^2 = 10000$ GeV² as obtained by using the GRV-LO [25] distri-22

PHENIX – "Isospin Effect" (?)

The isospin effect (charge square difference between **uud** and **udd**) **SHOULD** be there, but is this (and only this "trivial effect") what we see?

Or do we see in addition some genuine photon suppression?

No contradiction here: only "primordial" photons should be unaltered, "medium-induced" photons can be enhanced or suppressed

$$\sigma_{AA}/N_{coll} = (1/A^2) \times (Z^2 \sigma_{pp} + 2Z(A - Z)\sigma_{pn} + (A - Z)^2 \sigma_{nn})$$

F. Arleo, JHEP09 (2006) O15

W. Vogelsang, NLO pQCD + isospin

Zimanyi 75 Memorial Workshop, Budapest – July 3, 2007 – G. David, BNL

Isospin Effect – Statistics?

If this is real, we should convincingly see it in **ALL** centralities (need much higher statistics – and smaller systematics... - to reduce errors)

Isospin Effect – x_T scaling

Unfortunately the suppression is seen in a region where we are very sensitive to detector bias (cluster merging).

Also, so far it was seen only in one of the detectors (the one more prone to merging)

 x_{T} scaling to the rescue?

The reason: certain known detector imperfections (like shower merging, nonlinearity...) are smaller at lower p_⊤! Yes, we do our best to correct for them but nothing beats not having the problem in the first place...

The catch: sources at intermediate p_T (like jet conversion) that are so far of unknown magnitude, come into play, too!

Brand new: direct photons in 62GeV Au+Au

So we analyzed our 62GeV AuAu data, and that's what we got

Lines: T_{AB}-scaled pQCD

Note the same tendency as for π⁰ (and 200GeV p+p): favors 0.5p_T scale

Photon excess (double ratios) in 62GeV Au+Au

$(\gamma/\pi^0)_{meas}/(\gamma/\pi^0)_{had}$

Remarkably high – keep in mind pion suppression!

Photon R_{AA} (with pQCD) in 62GeV Au+Au

Zimanyi 75 Memorial Workshop, Budapest – July 3, 2007 – G. David, BNL

Photon R_{AA} : don't take this literally!

29

Zimanyi 75 Memorial Workshop, Budapest – July 3, 2007 – G. David, BNL

Summary

Waning (albeit not the end) of the era of single inclusive measurements

Tremendous benefits from measuring the reference in the same experiment

Physics message of 62 GeV Au+Au π^0 R_{AA} revised – medium almost the same as the one at 200GeV Au+Au

Photons suppression at high p_T in 200GeV Au+Au will likely be confirmed by the final 62GeV results

Nothing beats a detailed energy/species scan in the same experiment:

RHIC-II is coming!