Epitaxial Fe/Si/Fe(001) Structure and Magnetism of a Unique System

Jürgen Kohlhepp

GUSTAV STRIJKERS, HENK SWAGTEN, AND WIM DE JONGE

Eindhoven University of Technology, Department of Applied Physics and Center for NanoMaterials , P.O. Box 513, 5600 MB Eindhoven, The Netherlands

ROBBERT VAN DE KRUIJS AND THEO REKVELDT

Delft University of Technology, Interfacultair Reactor Instituut, Mekelweg 15, 2629 JB Delft, The Netherlands

Motivation (1)

- exploring new materials, combining ferromagnetic metals (Fe, Co, ...) and traditional semiconducting materials (Si, Ge, ...)
- new type of interlayer exchange coupling
- investigation of iron-silicide formation in well-defined systems

Motivation (2)

- bilinear (antiferromagnetic) coupling in epitaxial Fe/Si/Fe(001) sandwiches and textured Si/Fe(110) multilayers observed
- formation of *c*-FeSi in the spacer
 special band structure and density of states features
 Fermi - surface of *c*-FeSi
- additionally, observation of a strong *biquadratic (orthogonal) coupling* however, origin was still unknown
- Fe/Si multilayers are not suitable for studying biquadratic coupling

well-defined MBE grown trilayers H (kA/m temperature dependence of coupling strengths

CNM

Experimental

preparation

characterization

MBE - grown sandwiches

in-situ:

- AES - XPS

- LEED

- STM

ex-situ:

- temperature dependent MOKE
- SQUID
- Mössbauer spectroscopy (CEMS)
- XRD
- Polarized Neutron Reflectometry (ISIS, Rutherford Appleton Labs)

cNM

VG Semicon V80M MBE system

features:

- base pressure < 2x10¹¹ mbar
- separate growth, preparation and analysis chambers
- deposition chamber:
 - 3 e-guns, 4 Knudsen cells
 - quartz crystal monitors
 - RHEED
 - variable temperature 240-1100 K

CNM

- preparation chamber:
 - sputter cleaning (300-1100 K)
 - LEED
 - fast entry load lock

12 /n

VG Semicon V80M MBE system

- surface analysis chamber (ESCA - lab) -

12 /n

Properties of Fe on Ge(001)

Jürgen Kohlhepp, Magnetic Multilayers Workshop, Budapest 2001

cNM

Structure of Ge(001)/Fe/Si/Fe

b bcc-like (001)-structure maintained in stack

AES studies:

Fe diffuses from the bottom and top into the Si spacer accompanied by a reappearance of LEED spots

GIXR studies:

Ge(001) / 60 Å Fe / 14 Å Si / 45 Å Fe / 40Å Si

Ge(001) / (60 Å Fe / 14 Å Si / 45 Å Fe / 14 Å Si)₂ / 26Å Si

cNM

D Si spacer completely gone; transformed to FeSi

CEMS studies:

G.J. Strijkers, J.T. Kohlhepp *et al.* Phys. Rev. B 60, 9583 (1999) C-Fe_(1-x)Si with metastable CsCl (B2) structure and x » 0.36 is formed in the spacer

cNM

Jürgen Kohlhepp, Magnetic Multilayers Workshop, Budapest 2001

Intensity (a.u.)

Summary: Iron-silicide formation (simplified)

Magnetic Properties

Spin Polarized Neutron Reflectometry:

$$\left|\vec{Q}\right| = \frac{4p}{l}\sin\Theta$$

(+ , +) ; (- , -) : Non Spin Flip (NSF) Reflectivity (+ , -) ; (- , +) : Spin Flip (SF) Reflectivity

cNM

Ge(001) / 60 Å Fe / 14 Å Si / 45 Å Fe / 40Å Si

Magnetization reversal details at RT:

Magnetization reversal details at low T:

b biquadratic coupling dominates at low T

R.W.E. van de Kruijs, J.T. Kohlhepp *et al.* Phys. Rev. B (2002), accepted

Jürgen Kohlhepp, Magnetic Multilayers Workshop, Budapest 2001

Magnetization loops and simulation (1)

Ge(001) / 115Å Fe / 13.7 Å Si / 90Å Fe / 30Å Si

Magnetization loops and simulation (2)

Ge(001) / 115Å Fe / 12.4 Å Si / 90Å Fe / 30Å Si

cNM

Temperature dependence of coupling strengths

Ge(001) / 60Å Fe / t Si / 45Å Fe / 30Å Si

bilinear coupling

Possible origins of strong biquadratic coupling

 \succ - intrinsic higher order term $J_2(T) \propto 2 J_1(T)$

→ thickness fluctuations $J_2(T) \propto (J_1(T))^2$ J.C. Slonczewski, Phys. Rev. Lett. 67, 3172 (1991)

 \checkmark - loose spins, strong temperature dependence of J_2

J.C. Slonczewski, J. Appl. Phys. 73, 5957 (1993)

Loose spins model

 strong temperature dependence of the biquadratic coupling can be described with the loose spins model

- concentration of 1% loose spins in the spacer
- interaction potentials $U_1 = U_2$
- interaction potential $U/k_B \approx 200 340$ K

G.J. Strijkers, J.T. Kohlhepp *et al.* J. Appl. Phys. 87, 5452 (2000)

Jürgen Kohlhepp, Magnetic Multilayers Workshop, Budapest 2001

Qualitative proof of loose spins model

 bilinear and biguadratic coupling constants should have the same thickness dependence because of the identical interaction potential !

Ge(001) / 60Å Fe / t Si / 45Å Fe / 30Å Si

• indeed both J_1 and J_2 decay exponentially with the spacer thickness with approximately the same decay length λ

NN

Nominal Si Thickness (Å)

Quantitative proof of loose spins model

 theoretical intrinsic J₁ under the assumption that loose spins are located at midplane:

$$J_1(t_{\rm Si}, 0\,{\rm K}) = a^{-2} e^{-t_{\rm Si}/21} U(t_{\rm Si})$$

lattice constant interlayer coupling decay length

$t_{\mathrm{Si}}(\mathrm{\AA})$	$J_1(\text{calc}) (\text{mJ/m}^2)$	$J_1(\exp)$ (mJ/m ²)	
14.25	0.104 ± 0.018	0.126 ± 0.010	
15.00	0.072 ± 0.009	0.075 ± 0.008	G.J. Strijkers, J.T. Kohlhepp <i>et al.</i>
15.25	0.058 ± 0.011	0.046 ± 0.004	Phys. Rev. Lett. 84, 1812 (2000)
16.00	0.035 ± 0.008	0.033 ± 0.005	
16.25	0.028 ± 0.005	0.025 ± 0.003	

• good agreement between experimental and calculated values for $J_{1'}$ but this is only correct if there is no bilinear loose spin contribution !

Is there a bilinear loose spin contribution ?

• Apparently not !

In slightly different prepared samples (different concentrations of loose spins in the FeSi spacer) $J_1(t_{Si})$ is unchanged but $J_2(t_{Si})$ varies:

• J₁ is apparently the only contribution to the overall bilinear coupling; virtually no bilinear loose spin contribution is observed !

Conclusions

- in MBE-grown Fe/Si/Fe trilayers a is maintained throughout the stack; a crystalline iron-silicide with a *metastable CsCl structure* is formed in the spacer layer
- the magnetization behavior can be fully understood and described with bilinear and biquadratic coupling constants
- the *biquadratic* coupling in Fe/Si/Fe is caused by loose spins in the FeSi spacer layer

 J_1 and J_2 are caused by the same interaction potential !

• virtually no *bilinear loose spin* contribution is observed

