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@ For y,pc 2 log(2Ramy) = log(1/xa), xa ~ 0.01, the breakup a — bc
is coherent over the whole nucleus.

@ Partons move along straight—line trajectories. Impact parameters b;
conserved in the interaction.

@ Interactions with the nucleus before and after the virtual decay interfere
destructively.

® Nuclear target as a testing ground for unitarity/rescattering effects in
hadronic hard interactions.
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@ On the beam side : bc—system will evolve in all possible color multiplets.

@ On the target side : nucleus will be left in a state with multiple color
excited nucleons /

@ more excited nucleons — higher multiplicity in target hemisphere — a
nonperturbative source of energy loss for the bc—state.

@ predictions for: cut pomeron/topological cross sections;
forward-backward correlations; centrality/multiplicity dependence of
hard interactions.
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Production as excitation of beam partons a — bc

® We need to separate:

@ Elastic, color—diagonal (= uncut Pomeron) and
color—rotation /excitation (= cut Pomeron) scatterings.

@ first square, average over target states, and apply closure in summing
over the nucleon and nucleus excitation.

@ then the problem reduces to the calculation of few—particle S—matrices
in a color—coupled channel Glauber—Gribov multiple scattering theory.
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A matrix in the space of possible SU(N)—color singlets.
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A matrix in the space of possible SU(N)—color singlets.
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~—
color rotation/excitation  color diagonal

Nuclear multiparton S—matrix: S ({b }) =exp[—3Ta (i(ei) + ig}))]
)

Expansion in powers of Z(ex is an expansion in cut pomerons (
@ Expansion in powers of Z(
corrections.

Only the sum will be infrared safe, separation into color excitations and
elastic rescatterings is infrared sensitive.
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Master formula for dijets
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Master formula for dijets

do(a* — bc) _ / d’byd*b.d’bj,d* b, o~ iPy(bs—b,)~ip (b—b))
dzpd?p,d?p, (2m)*

(25, b — be)* (26, by — L)
[, (bl b, by, be) + S (8, b) — S (b, bl bL) — SEL(B, b, b))

o DIS: ~* g
S:y*—qg = 1 + 8
1 N2
@ Open charm: g - cc = 1 +. 8
1(Nc—suppressed) N2
o F ij 1
orward dijets g — qg¢ — 3 +6+15
Ne Nex N2
@ Central dijets
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Diffractive dijets define nuclear unintegrated glue

@ Diffractive hard dijets from pions:
TA — Jet; + Jety

@ Hard jets acquire p; from gluons

@ Collective glue is a physical
observable: Ma(p) o ¢(b, p).




Nuclear unintegrated glue

@ nuclear coherent glue per unit area in impact parameter space:
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Nuclear unintegrated glue

@ nuclear coherent glue per unit area in impact parameter space:
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@ collective glue of j overl
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@ probab. to find j overlapping nucleons
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® Nuclear S—matrix for the dipole Sa(b, r) = exp[—30(r) Ta
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Nuclear unintegrated glue: salient features
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collective glue (k) @ nuclear coherent glue per unit

area in impact parameter space:
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Nuclear unintegrated glue: small-x evolution

@ unintegrated glue:

d?r
(b, x, p) = / 7z XPlipr] Sq(bux.r) = wo6)(p) + (b . p)

® small=x evolution Nikolaev,Zakharov, Zoller | Mueller' 94:
Sqg(b, x0, r) — Sqg(b, x0, r) + log(xo/x)dSq5(b, x, r)
05q5(b, x, r) o / |¢qt‘1g|2<5qt7g - 5q(7>
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¢(b,x, p) — ¢(b, x,p) + log(xo/x)d¢(b, x, p)
6¢(b,x, p) = Kgrr @ (b, x. p) + Q[¢](b, x, p)
Qlel(bx,p)=/ d2qd2n¢(b,x,q){ [K(p+ﬁ,p+q)—K(p,n+p)—K(p,q+p)] o(b,

—(f)(b,X,p) |:K(K’7K/+q+p)_K(K/7K’+p)i| } ; K(pq):(gggg2
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Unitarity cut interpretation of the nuclear glue

o(b,x,K) = Z WJ'(VA(b)) f(j)(x, K)
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Unitarity cut interpretation of the nuclear glue

jz1

' o(b,x, k) = Z wj(va(b)) fU)(x, k)

@ Expansion of the cut nuclear

; . pomeron in the cut free-nucleon
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the expansion coefficients
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Uncut, and two types of cut Pomerons

@ coherent distortion of lightcone
WF — uncut Pomeron
exchanges.

@ Color coupled channel property
— two types of cut pomerons:

@ transitions between two
multiplets of different
dimensionality (here 1 — 8):
necessarily leaves a color
excited nucleon, coupling
o Ta(b)f(x, k), couples to
both constituents.

@ rotations within the same color
multiplet: summed up in the
nuclear Reggeons. Coupling
x ®(b, x, K;).
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Uncut, and two types of cut Pomerons

@ A color rotation Pomeron
contributes j color excited
nucleons with a weight
o< wi(b) fU)(x, K;).

@ Even for single—particle spectra,
in topological cross sections,
spectator interactions leave a
trace




QCD vs. standard AGK: two-Pomeron cuts

I
|
I
|
I
|
|
|
|
|
|
L
|
I
I
|

1 -4 2
@ AGK for DIS off a nucleus:

AT( )ﬁf‘ b,r) = —[o(x, r)T(b)]2
AT p(PIP; b, r) : Al f‘lp; b,r): Azrg"(l)ﬁl)ﬁ; bry=1:—4:



QCD vs. standard AGK: two-Pomeron cuts

>
>

|
@ QCD: the cut pomerons couple differently to singlet—to—octet excitation
and octet—to—octet rotation:

BT (B P:b,r) = —2 - [00() T(B)] - [o(x, ) T(B)] — 5[0, N T(B)]

AaTE(B B 5 b.1r) = 2 o0(x) T(b)] [o(x, 1) T(B)]



QCD vs. standard AGK: topological cross sections

Inelastic cross section of the gg-dipole-Nucleus interaction:
r(r,b) = 1—exp[-a(r)T(b)]
1 14
= exp[—o(r)T(B)]) Silo(r)T(b)]
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QCD vs. standard AGK: topological cross sections

Inelastic cross section of the gg-dipole-Nucleus interaction:
r(r,b) = 1—exp[-a(r)T(b)]
= exp[—o(r)T(b ]Z—[a rT(b

@ Following Capella-Kaidalov-Bertocchi-Treleani:
exp[—a(r) T(b)][o(r) T(b)]”/v! = contribution from v cut Pomerons

@ Invalid in QCD. Ignores the role of spectator interactions and the two
types of cut Pomerons.

@ Spectrum of forward quarks in DIS. v cut Pomerons affect xg
distribution:

do,
d?bdxp

- / dzr‘zp(x,:, r)‘ZF(”)i"e’(r, b)



Summary

@ Topological cross sections follow directly from nonlinear-k, factorization
for inclusive cross sections

@ Novel property of QCD unitarity cutting rules: two kinds of cut
pomerons

@ Comover/spectator interactions contribute to topological cross sections
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