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Abstract 
We examine the transient diffusion equation with time- and space-dependent diffusion 

coefficients in 1D. Such transport equations can be easily derived from the Fokker-Planck 
equation and are essential to understand the diffusion mechanisms in general, e.g. in carbon 
nanotubes. With the help of the classical self-similar Ansatz we give new, nontrivial analytical 
solutions. Then we reproduce these by 16 explicit numerical time integration methods, 11 of 
which are recent and unconditionally stable. The results show that some of the algorithms, e.g. 
the leapfrog-hopscotch method, are very efficient and can outperform the standard FTCS 
method. 

Keywords 
Diffusion equation; analytical solutions; numerical methods; time-dependent diffusion 

coefficient; space-dependent diffusion coefficient  

1. Introduction 
Regular diffusion or regular heat conduction is an important transport process which can 

occur in solids. It is described with a single linear partial differential equation (PDE) of space 
and time. Diffusion means particle transport and heat conduction means energy transport. 
Generally, diffusion processes can be studied in different coordinate systems with different 
dimensions, here we consider only one Cartesian coordinate, therefore the simplest diffusion 
PDE reads 

( ) ( )2

2
, ,u x t u x t

D
t x

∂ ∂
=

∂ ∂
     (1) 
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where x, t∈ , ( )u u x,t=  is the distribution of the particle concentration (temperature in 
case of heat conduction) in space and time and D is the constant diffusion coefficient.  

Plenty of analytical solutions exist for Eq. (1). On the other hand, simple equations such 
as (1) are often considered to construct and test new numerical algorithms by mathematicians. 
However, in real problems, the properties of the materials such as the diffusivity are rarely 
constant, but depend on time [1] or space. The general space-dependent diffusion equation, 
which is also called the Fick-Jacobs equation [2] (p. 68) are usually derived from the Fokker-
Planck equation as it was shown by Reguera and Rubi [3] or by Zwanzig [4]. Such equations 
are used to describe the single-particle diffusion processes in systems with structural 
inhomogeneities like narrow ribbon channels [5]. These kinds of systems emerge when 
molecules move through carbon nanotubes [6], the membrane of cells [7] or systems of 
channels e.g. in zeolites [8]. 

To introduce and investigate irregular diffusion phenomena, we define the PDE (1) with 
non-constant diffusion coefficients. More concretely, the diffusion coefficient will have the 
simple power law time or space dependence: ( ) ˆ nD t Dt=  or ( ) mD x Dx= . In these two cases, 
the diffusion equation have the form of 

2

2
nu( x,t ) ( x,t )D̂ t u

t x
∂ ∂

=
∂ ∂

,    (2) 

and 
 

( ) ( ) ( ) ( )2
1

2
, , , ,m m mu x t u x t u x t u x t

D x D mx x
t x x x x

− ∂ ∂ ∂ ∂ ∂
= = +    ∂ ∂ ∂ ∂ ∂   

,     (3) 

respectively. To avoid confusion, we use the D̂  and D  notations for the constant “generalized 
diffusion coefficient” in the time and space dependent cases, thus they have the dimension of 

nt D−  and mx D− , respectively. 
In two of our last studies [9], [10] we investigated the regular diffusion equation of Eq. (1) with 
the above-given self-similar, traveling wave, traveling profile or with some generalized self-
similar Ansätze. We derived some new analytical solutions for the regular diffusion equation 
which go far beyond the well-known Gaussian (and error-type) solutions and can be expressed 
with the multiplication of Gaussian and Whittaker or Kummer's functions including different 
parameters. The presented and analysed refined functions describe irregular solutions, which 
have a different rate of decay than the Gaussian fundamental solution. Additionally, we 
evaluated solutions which have some oscillatory behaviour and a quick decay at large temporal 
and spatial coordinates. Some other solutions have physical relevance and describe power-law 
decay processes at infinite time and space coordinates. In the present paper, we investigate the 
diffusion equation which has spatial dependent diffusion coefficients, we solve it with the 
classical self-similar Ansatz and analyse the possible solutions, which contain the Whittaker 
functions. We will show that due to the additional exponential factor in the Whittaker functions 
have a much quicker decay than the Kummer functions (see Eq. (4)). Such kinds of solutions 
for diffusion processes are still unknown in the scientific literature till now. 

There is a detailed study by Bluman and Cole [11] describing several analytical solutions 
to the diffusion equation - very similar to the error functions - but our results are novel and 
different from those of [11]. Straightforward generalizations of diffusion equations are the 
reaction (or) advection-diffusion equations. Such systems may have spatially dependent 
velocity or diffusion coefficients as well. Zoppou and Knight managed to derive analytical 
solutions for such a system [12]. However, their solutions are different from ours because they 
used a Gaussian-type Ansatz and not our general self-similar type. To find an analogy, we 
should mention that for the incompressible multi-dimensional Navier-Stokes equation the 
analytic results [13] derived from the self-similar Ansatz are the Kummer functions [14]. For 
the compressible case, however, the Whittaker function was obtained [15]. In this sense, we 
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have to emphasize that for processes where the diffusion coefficient has spatial dependence, 
the resulting functions to a great extent are different from the time dependent case (for this latter 
case, consult [16]). 

 
Most numerical methods to solve the diffusion or heat conduction equation are either the 

member of the family of  finite difference schemes (FDM) [17], [18] or that of finite element 
methods (FEM) [19], [20], or a mixture of these [21]. The best known FDMs are the explicit 
FTCS (forward time, central space), which uses the explicit Euler time discretization, and the 
implicit (Euler) and the Crank-Nicolson method. Implicit methods have much superior stability 
properties, thus they are typically used to solve this and similar equations [22]–[31]. Their 
disadvantage is that they require the solution of a system of algebraic equations at each time 
step, whose parallelization is not obvious. Explicit methods avoid this problem, but most of 
them are unstable when the time step size is larger than the so-called CFL (Courant–Friedrichs–
Lewy) limit. This limit can be very low for non-uniform systems, e.g. in the case of Eq. (2) and 
(3), which will be demonstrated in Section 4 of the current paper.  

That is why we agree with those scholars who think that explicit and unconditionally 
stable algorithms are worth to study [32]–[39]. In the recent past we constructed new specimens 
of this family, theoretically studied and tested them using simple analytical solutions, as well 
as numerical reference solutions  [16], [40]–[47]. We found that these new methods are able to 
give fairly accurate results much faster than other methods or the widely used MATLAB ‘ode’ 
solvers. In this paper, we use the constructed nontrivial analytical solutions to examine how the 
methods perform and which one can be proposed under different circumstances.  

2. The analytical solutions 
We solve PDE (1), (2) and (3) using the well-known reduction technique. First a new 

variable b
x
t

η =  is defined, which is a combination of the space and time variable. The solution 

( )u x, t  is then searched with the self-similar Ansatz, which has the form 

( ) ( ) ( )a a bu fx, t t f t x / tη− −== ,     (4) 

where a and b are arbitrary real constants (noted by α  and β  in our previous papers) and f 
is the shape function with one single variable η. The first and second derivatives with respect 
to η are denoted by 'f  and ''f . It is assumed that they exist and continuous.  

2.1. The case of constant diffusion coefficient 
If one substitutes the first and second derivative of the Ansatz (4) into the original Eq. (1) 

one obtains the following ordinary differential equation (ODE) for ( )f η : 
1 ' ''
2

a f f Dfη− − = . 

However, this transformation is valid only if the following conditions are fulfilled:  a is an 
arbitrary real number, 1 2b /= . Now the software Maple12 gives the solution of this ODE: 

2
2 2

4
1 2

3 3( ) 1 , , 1 , ,
2 4 2 4

Df e c M a c U a
D

η η ηη η
−     

= − + −         
 

where M and U are the Kummer M and U functions, respectively. For negative integer values 
of a, the solution can be written in another form: 

2

3 2 1 4 1 1

2
4 1 2( ) ,

2
;

2 2
1
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D

a
af e c Fc

D
H

D

η η ηη
−

−

  − = +        
⋅ , 

where H is the Hermite polynomial, F is the hypergeometric function. 
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For a = 4 the solution can be simplified as follows:  

( )
2

2 4 6
4

9/2 2 2 3 3, 1
2 20 840

x
Dtx x x xu x t e

Dtt D t D t

− 
= − + −  

 
   (5) 

Fig. 1 shows the time development of the concentration function (5). 
 

 

 

2.2. The case of time-dependent diffusion coefficient 
Substituting the Ansatz (4) into PDE (2) yields the following ordinary differential equation 

(ODE) for ( )f η : 

ˆ' ''
2

a f f Dfzη− − = , 

if the following conditions are fulfilled: a is an arbitrary real number, 2b z /= , where 
1z n= + . The solution of this ODE: 

2 2 2
ˆ4

1 2
3 3( ) , , , ,ˆ ˆ2 24 4

z
D z a z z a zf e c M c U

z zD D

η η ηη η
−     − −

= +            
.  

An example for the time development of the concentration function u for a given parameter set 
is presented in Fig. 2. 

 
 

Fig. 1: The solution (5) of Eq. (1) in the case of constant diffusion coefficient for [ ] [ ]1 0 1 0 2 0 3D , t . , . , x ,= ∈ ∈  . 
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2.3. The case of space-dependent diffusion coefficient 
Substituting the first and second derivative of the Ansatz into the original Eq. (2) we arrive 

to an ordinary differential equation (ODE) for ( )f η  

( )1 0m mD f f Dm afs
ηη η −′′ ′− + − − =  

if and only if the following constraints hold: a and m are arbitrary real numbers, 1b / s= − , 
where 2s m= − . 

The Maple software again gives the solution of this ODE: 

( ) ( ) ( )
2 2

1 21 2 1 21 12 3 3, ,
2 22 2

1 exp ,
2

s ss

sa s sa sm m
s ss s

s s
f c M c W

Ds s D s D
η ηηη

η

− −−

+ +− −

       = − ⋅ +                  
 

where M and W are the Whittaker functions [14], [48]. It is worth to mention the formulas 
for how the Whittaker functions can be expressed [14] in terms of Kummer functions M and U  

( ) ( )1 1
2 2 1

, 2e ,1 2 ;zM z z M zµ
κ µ µ κ µ− += − + +  

( ) ( )1 1
2 2 1

, 2e ,1 2 ;zW z z U zµ
κ µ µ κ µ− += − + +  

The exponential factor implies that the Whittaker functions have a quicker decay than the 
Kummer functions. Fig. 3 exemplifies the time development of the concentration function u for 
a given parameter set. 

  
 

Fig. 2: The exploding solution of Eq. (2) in the case of time-dependent diffusion coefficient for the 

1 2
31 2 1 02

ˆ , a , n , c ,D c= = = − = =  parameter set and the [ ] [ ]0 1 1 2 1 13t . , . , x ,∈ ∈  domain. 
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3. The discretization and the numerical schemes 
For Eq. (1) and (2) we use the usual central difference operator for the discretization of the 

second space derivative. In the case of Eq. (3), the material properties depend on space, thus a 
more general treatment is necessary. We discretize the function ( )D x  and at the same time the 
space derivative in Eq. (3) by the standard central difference formula to obtain 

1 1
2 2

1 11 m m
i i

i i i i idu u u u uD x x
dt x x x+ −

+ −− − = + ∆ ∆ ∆ 
 

We introduce thermal resistance: 

, 1
1

2

i i m
i

xR
Dx+

+

∆
=  

with which we obtain the ODE system  

, 1 , 1

1 1

i i i i

i i i i idu u u u uD
dt x R R+ −

+ − − −
= +  ∆  

, 

which is the spatially discretized form of Eq. (3). The time variable is always discretized 
uniformly according to the usual rule: 

0 fin 01jt t jh , j ,...,T , hT t t= + = = − . 

The standard definition of the mesh-ratio, 2
Dhr
x

=
∆

 is applicable only for Eq. (1). In case of 

Eq. (2), D and therefore r is not a constant but changing in time, and must be taken into account 
always in the proper time point. On the other hand, in the case of Eq. (3) the mesh-ratio is 
generalized as follows: 

Fig. 3: The solution ( ) u x, t  of Eq. (2) in the case of space-dependent diffusion coefficient for the 

1 21 6 10 0 1D , a , m , c , c= = = = =  parameter set and the [ ] [ ]3 3 2 0 25 1 15t , . , x . , .∈ ∈  domain.  
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, 1 , 1

1 1+i
i i i i

hr
x R R− +

 
=   ∆  

. 

We also introduce a brief notation which condense information about the neighbours of the 
actual cell: 

1 1

, 1 , 1
+i

i i

i i i i

u uhA
x R R

− +

− +

 
=   ∆  

. 

Here some necessary information about the used schemes are briefly presented and the 
source of the publication are given where the interested reader can find more details. First, the 
formula of each method is presented for the case of spatially uniform material properties, Eq. 
(1)). The formulas for Eq. (2) are the same with the difference that the resistances R and 
therefore the quantities r depend on time and must be recalculated in each time step. After this, 
the formulas generalized for a non-uniform case (Eq. (3)) are immediately given. 

 
1. The oldest and simplest among our methods is the constant neighbour (CNe) scheme [46], 

[49]. For Eq. (1) or (2), the following formula must be applied for each node: 

( )2 21 1 1 1
2

n n
n n i i
i i

r ru uu u e e− −+ − ++
= ⋅ + −     (6) 

while for the non-uniform case, the new values of the cell variables are:  

( )i i1

i
1in n

i i
r rAu u e e

r
− −+ = ⋅ + −  

2. The CpC is a two-stage method [44]. The first, predictor stage is a fractional time step 
with length ½h with the CNe. The second, corrector stage is full time step size CNe where the 
predictor values are used to recalculate the Ai quantities. 

3. The 2-stage linear-neighbour (LNe or LNe2) method [46]. The first, predictor stage is a 
full time step CNe. Then the aggregated “slopes” of the neighbours are calculated as 

pred pred n n
1 11 1i i ii is u u u u− +− += + − − . 

and then, the corrector values of the two-stage LNe method for the uniform case are given as 

( )
2

2 21 1 1 11 1
2 2 2

i
n n

n n i i
i i

r
r ru u s eu e e

r
u

−
− −+ − +  + −

+ − + −  
 

=    (7) 

In the non-uniform case, new Ai values must be calculated based on the predictor values. After 
this the corrector step can be performed based on the formula 

new new
1 i 1 i

i i in n i
i i i

i i i

r
r A A A Aeu e A

r r r
u

−
−+  − −−

+ − +  
 

= .          (8) 

 4-5. Based on the obtained corrector values of the LNe scheme, the corrector stage (7) or (8) 
is repeated. If there is one extra stage (it means three altogether), we have the LNe3 scheme. If 
there are two extra stages (4 altogether), we call it LNe4 method [46]. 

6. The CLL method is very similar to LNe3 but with fractional time steps at the first and 
second stages with ⅔h, in order to achieve third order temporal convergence [47]. 

7. The pseudo-implicit (PI) two-stage algorithm [45] applies the θ formula for each node, 
which can be written as 
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( ) ( )
( )

1 11 1 2

1 2 1

n n n
i i in

i
r u r u u

u
r

θ

θ
− ++

− + +
=

+ −
 and  ( )

( )
1 1

1 1
i i

i

n
in

i
r u A

u
r
θ

θ
+ − +
=

+ −
   (9) 

for the uniform and non-uniform cases, respectively. At the first, predictor stage, a half-sized 
time step is taken with 0θ = . At the second, corrector stage, a full time step must be taken with 

1
2θ = . 

 
For the application of the odd-even hopscotch-type methods, one needs a special, bipartite 

spatial grid, in which all the nearest neighbors of the odd nodes or cells are even and vice versa. 
The structure of the examined algorithms are shown in Fig. 4, where the time flows from the 
top to the down of the figure. In the case of each method, only one odd, and one even cell is 
present in the figure. The stages are symbolized by colorful boxes while the repeating unit of 
blocks are surrounded by red dashed line. For example, the leapfrog-hopscotch structure (LH) 
consists of two half and very many full time steps. First, a half-sized time step (symbolized by 
a light purple box with the number ‘0’ inside) is taken for the odd cells using the initial values, 
then full-time steps are taken strictly alternately for the even and odd cells until the end of the 
last timestep (orange box), which has half-length for odd cells again. One must be aware that 
when a new value of ui is calculated, always the latest values of the neighbors 1iu ±  are used, 
which minimizes the memory usage as well. At points 8-13 we enlist the formulas and indicate 
if a halved time step size has to be used. 

 

 

 
8. Original odd-even hopscotch algorithm (OOEH): stage 1: 1θ = , stage 2: 0θ = . 

9. Reversed odd-even hopscotch algorithm (RH): stage 1:, 0θ = , stage 2: 1θ = . 

10. Shifted-hopscotch (SH): stage 1: ½h , 0θ = . Stages 2-3-4:. 1
2θ = , Stage 5: ½h, 1θ = . 

11. Asymmetric-hopscotch (ASH): Stage 1: ½h , 0θ = . Stage 2:. 1
2θ = , Stage 3: ½h, 1θ =  

12. Leapfrog-hopscotch (LH): Stage 0: ½h , 0θ = . Intermediate stages: 1
2θ = ,  

Last stage : ½h, 1
2θ = . 

13. Leapfrog-hopscotch-CNe (LH-CNe): Same structure as LH, but always the CNe formula 
with the appropriate time step size. 

Fig. 4: The structure of the hopscotch-type methods in space and time. From left to right: original odd-even 
hopscotch (OOEH), shifted-hopscotch (SH), asymmetric hopscotch (ASH), leapfrog-hopscotch (LH). The 
repeating units are surrounded by thick red dashed line. The formulas of the algorithms are given in the text. 
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14. The FTCS (the standard Forward-time Central-space) scheme is actually the θ formula 
(9) for 1θ = . 

15. The Dufort-Frankel (DF) is a known 1-stage but 2-step algorithm 
( ) ( )1

1 11 1 2 2

1 2

n n n
i i in

i
r u r u u

u
r

−
− ++

− + +
=

+
 and  ( ) 1

n 1 1 2
1

i i

i

n
i

i
r u A

u
r

−
+ − +
=

+
. 

The CNe scheme is used for the starting time step. 
16. The alternating direction explicit (ADE) scheme is a known method. It is explicit only 

for the uniform case, so we do not apply it to Eq. (3). One must split the calculations based on 
the directions: when one moves from left to right, the variable is denoted by p, and when from 
right to left, it is denoted by q (both has to be initialized similarly to u). The formulas are the 
following: 

( ) ( )1
1 11 1

1

n n n
i i in

i
r p r p p

p
r

+
− ++

− + +
=

+
 and  

( ) ( )1
1 11 1

1

n n n
i i in

i
r q r q q

q
r

+
− ++

− + +
=

+
. 

and then average ( )1 1 1 / 2n n n
i i iu p q+ + += +  gives the solution for each node. It uses the new 

values of the neighbours 1
1

n
ip +
−  and 1

1
n
iq +
+ , thus it cannot be parallelized so straightforwardly. 

The CNe, CpC, LNe, LNe3-4, CLL, LH-CNe, LH, RH, SH, ASH, and PI methods are 
constructed by our research group. CNe and FTCS has first order convergence, CLL third order, 
all others have second order. All of the examined methods, except the FTCS, are 
unconditionally stable in the case of Eqs. (1)-(3), there is no CFL limit. The CNe, CpC, LNe, 
LNe3-4, and the LH-CNe has dynamical consistency (the new values are the convex 
combination of the old values). It implies that the Maximum and Minimum principles are 
automatically fulfilled. 

 

4. The numerical results 
All the simulations are performed in a MATLAB environment. For several fixed time step sizes, 
we are going to calculate the error of each method, which means we compare the numerical and 
the analytical solution node by node and select the difference with the maximum absolute value. 

4.1. The case of constant diffusion coefficient 
We reproduce the solution (5), under the circumstances presented in Fig. 1. It means 

[ ] [ ]1 0 1 0 2 0 3D , t . , . , x ,= ∈ ∈ , and 0 01x .∆ = . In Fig. 5 the errors of the examined methods as 
a function of the time step size are presented in a log-log diagram. The calculated CFL limit for 
the FTCS scheme is 55 10−⋅ . Indeed, that scheme gives meaningful result only below this limit, 
but all of the unconditionally stable methods are usable above this.  
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4.2. The case of time-dependent diffusion coefficient 

We reproduce the solution presented in Fig. 2, so 1 2
31 2 1 02

ˆ , a , n , c ,D c= = = − = = , 

[ ] [ ]0 1 1 2 1 13t . , . , x ,∈ ∈  and 0 05x .∆ = . In Fig. 6 the errors of the examined methods as a 
function of the time step size are presented. The calculated CFL limit for the FTCS scheme is 
increasing from 66 3 10. −⋅  to 51 8 10. −⋅ . Below 66 3 10h . −= ⋅ , the FTCS scheme is very accurate. 
However, the other algorithms are more reliable and able to reproduce the exploding solution 
without any instability issues. 

 

Fig. 5: Errors as a function of the effective time step size h for constant diffusion coefficient. The slope of the error-
curves show the temporal order of convergence of the methods. 

10



 

 

 

 

 

Fig. 6: Errors as a function of the effective time step size h in the case of the exploding solution when the diffusion 
coefficient depends on time.  

Fig. 7: The concentration u as a function of the x variable in the case of the initial function u0, the analytical solution 
at fint , and two numerical solutions for the case of the time-dependent diffusion coefficient. We underline that the 
standard Runge-Kutta methods are unstable for these time step sizes. 
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4.3. The case of space-dependent diffusion coefficient 
We reproduce the solution of Fig. 3, which means 1 21 6 10 0 1D , a , m , c , c= = = = = , 

[ ] [ ]3 3 2 0 25 1 15t , . , x . , .∈ ∈ . We use a very small space step size, namely 0 0005x .∆ = . The 

calculated CFL limit for the FTCS scheme is 83 2 10. −⋅ . Due to this, the FTCS scheme did not 
give any result, it was unstable for all the used time step sizes, unlike the unconditionally stable 
explicit methods.  

 

 
 

3. Conclusions 
We have constructed a set of analytical solutions for the one dimensional regular diffusion 
equation when the diffusion coefficient depends on time or the spatial coordinate using a 
similarity transform. The derived solutions can be expressed with Kummer's or the Whittaker 
functions which are highly nontrivial results.   
We reproduced the presented analytical solutions by 16 numerical methods (15 in the case of 
the space-dependent diffusion coefficient). One of these methods is the most standard FTCS 
scheme, and the others are explicit and unconditionally stable schemes. Three members of this 
latter group is known for decades, but the others are recently invented. We observed that the 
leapfrog-hopscotch algorithm has the best performance in all cases for almost all time step sizes. 
For medium and small time step sizes, some other hopscotch-type methods also perform well, 
and the Dufort-Frankel scheme is quite competitive, too. If the CFL limit is very small, even 

Fig. 8: Errors as a function of the effective time step size h in the case of the space-dependent diffusion coefficient. 
The used parameters and the domain are the same as in Fig. 3, but the space step size is quite small: 0 0005x .∆ = . 
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the least accurate CNe method can outperform the FTCS scheme. It can be generally stated that 
it is better to use the unconditionally stable explicit methods than the conditionally stable 
traditional ones for these kinds of problems. 
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