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Bondi-type systems near spacelike infinity and the
calculation of the Newman–Penrose constants
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János Kánnára)
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~Received 23 July 1999; accepted for publication 27 September 1999!

We relate Bondi systems near spacelike infinity to another type of gauge condi-
tions. While the former are based on null infinity, the latter are defined in terms of
Einstein propagation, the conformal structure, and data on some Cauchy hypersur-
face. For a certain class of time symmetric space–times we study an expansion
which allows us to determine the behavior of various fields arising in Bondi sys-
tems in the region of space–time where null infinity touches spacelike infinity. The
coefficients of these expansions can be read off from the initial data. We obtain, in
particular, expressions for the constants discovered by Newman and Penrose in
terms of the initial data. For this purpose we calculate a certain expansion intro-
duced by Friedrich@J. Geom. Phys.24, 83–163~1998!# up to third order. ©2000
American Institute of Physics.@S0022-2488~00!02602-5#

I. INTRODUCTION

Most studies of gravitational fields near null infinity are based on the use of ‘‘Bondi-type’’
coordinates. In the first investigations of the behavior of the field near null infinity~cf., Refs. 1–3!
Bondi-type coordinates played a crucial role in the specification of the fall-off behavior of the
field. The characterization of the asymptotic behavior of gravitational fields near null infinity in
terms of the conformal geometry subsequently suggested by Penrose4,5 does not require the use of
such a specific class of coordinates. Nevertheless, Bondi-type coordinates are usually also em-
ployed in this context because they allow us to exploit in a convenient way certain features of the
null cone structure. If the gravitational field is, however, to be analyzed in detail in the region
where future and past null infinityJ 6 ‘‘touch’’ spacelike infinity, and if this is to be done such
that J 2 and J 1 are treated on an equal footing, Bondi-type coordinates are not particularly
helpful. Already in the simplest nontrivial case, that of the Schwarzschild solution, the use of
double null coordinates leads to difficulties.

In Ref. 6 an initial value problem for the conformal vacuum field equations has been formu-
lated which is designed to analyze near spacelike and null infinity the Einstein propagation of

asymptotically flat data on a Cauchy hypersurfaceS̃ in a finite picture. In this setting, which is
based on certain conformally invariant structures, spacelike infinity is represented by a cylinder
I .] 21,1@3S2 such that the setsJ6.R3S2, representing, respectively, future and past null
infinity, ‘‘touch’’ the cylinder at its two boundary componentI 65$61%3S2. Though the under-
lying facts about the evolution equations which have been used here hold for much more general
situations, the picture has been analyzed so far under certain simplifying assumptions on the initial
data. The data are assumed to be time symmetric and the conformal structure, which then repre-
sents the free datum, is assumed to extend smoothly through spacelike infinity such that the latter

is represented by a pointi in an extended manifoldS5S̃ø$ i %. The cylinderI is obtained by

a!Electronic mail: kannar@rmki.kfki.hu
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blowing up the pointi to a sphereI 0.$0%3S2 and by smoothly extending the solution in a
particular geometric gauge.

It can be seen already under these assumptions on the data that the new picture allows us to

relate nearI 6 properties of the data onS̃, which touchesI at I 0, to properties of the field on null
infinity by solving a hierarchy of differential equations onI. These equations have been used in
Ref. 6 to derive certain ‘‘asymptotic regularity conditions’’ for the initial data whose imposition
prevents a certain class of logarithmic singularities of the field at the setsI 6 from arising. How-
ever, it still has to be shown that the asymptotic regularity conditions ensure a time evolution of
the data which extends near spacelike infinity smoothly to null infinity.

In the present article we analyze the consistency of the early investigations of fields near null
infinity with the picture developed in Ref. 6 and we demonstrate to some extent the efficiency of
the latter in calculating near spacelike infinity quantities on null infinity from the given data. For
this purpose we make two different types of assumptions. On the one hand, we shall consider
space–times arising from time symmetric vacuum data as described previously which satisfy the
asymptotic regularity conditions. Our calculations of fields on the cylinderI rely only on these
assumptions. On the other hand, we shall assume that these data develop into solutions which
admit a smooth conformal structure at null infinity and that the gauge conditions proposed in Ref.
6 extend in a smooth and regular way toJ6. We expect that our analysis will contribute infor-
mation on the solution process which in the end will allow us to remove the second type of
assumptions and to show that the existence of the smooth evolution can be derived solely from
assumptions on the initial data.

The present article can be divided into three different, though related, parts.
~1! In Ref. 6 an expansion of the field near spacelike infinity in terms of a ‘‘radial’’ coordinate

r, which vanishes on the cylinderI representing spacelike infinity, has been introduced. We
calculate the coefficients of this expansion to third order. This calculation is not only of interest
because it allows us to study the Newman–Penrose~NP! constants, which will be discussed in the
following, but also because it provides some information on the smoothness of the evolution near
null infinity for fields arising from data subject only to our first type of assumptions. Though the
asymptotic regularity conditions referred to previously exclude certain types of logarithmic sin-
gularities in the evolution nearI, there exists another potential source of singularities. To show
that in fact no further singularities can arise at any order, it is clearly of interest to understand the
situation for the first few orders of the expansion. The potential singularities should show up for
the first time at the order of our calculation. Our calculations show that at this order they are in fact
excluded by the asymptotic regularity conditions.

We note that our expansion of the field near spacelike and null infinity, which we carry out in
terms of the conformally rescaled fields and associated gauge conditions, can be translated into an
expansion of the field near spacelike infinity in terms of the ‘‘physical’’ field and suitable coor-
dinates. We shall not carry out such a translation because the main point of our consideration is the
fact that we can relate quantities on null infinity to the data onS̃.

~2! Bondi-type coordinates and certain related frame fields~cf. the definition of the ‘‘NP
gauge’’ in the following! are based on the structure of null infinity. The gauge conditions in Ref.
6 ~cf. the definition of the ‘‘F gauge’’ in the following! are based on Cauchy data, the Einstein
equations, and certain properties of conformal structures. We discuss in general terms how to
construct near null infinity the transformation from theF gauge into the NP gauge. Using the
expansion referred to previously we then obtain expansions nearI 1 of various quantities given in
the NP gauge in terms of the coordinates arising in theF gauge and coefficients which are given
directly in terms of the initial data onS. We note that these expansions imply expansions of
quantities of physical interest on null infinity such as the Bondi-energy-momentum, the angular
momentum~cf. Ref. 7 for various suggestions!, the radiation field, etc., in terms of the coordinate
r on null infinity, which vanishes atI 1, and coefficients derived from the initial data.

Since we need, for our considerations quite detailed information on the structure of the initial
data near spacelike infinity, our explicit calculations are done only for time-symmetric data.
However, many of our considerations apply also to more general situations and as soon as suffi-
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cient information on data with nonvanishing extrinsic curvature becomes available~cf. Ref. 8!, we
shall be able to derive by similar calculations relations between fields onJ 2 and J 1. These
relations will contain nontrivial information on the evolution process.

~3! As a specific application of this discussion we reconsider the constants which have been
associated by Newman and Penrose with asymptotically simple space–times~cf. Refs. 9 and 10!.
The NP constants are given by certain integrals over spherical cuts of null infinity and have been
shown to be absolutely conserved in the sense of being independent of the choice of cut. We
derive for them expressions in terms of the initial data onS̃. Such expressions have been given
already in the static case in Ref. 10. We derive analogous expressions for a much more general
class of space–times arising from time-symmetric initial data. For these data the time evolution of
the field is in general not known explicitly as is the case in the presence of a timelike Killing
vector field. The fact that we can nevertheless obtain expressions in terms of the data illustrates to
some extent the efficiency of the new picture. Though various authors~cf. Refs. 11–13! discuss
these constants from different points of view, no consensus has been found concerning their
geometrical/physical significance. Whether our discussion will help clarify the meaning of the NP
constants remains to be seen. One of our main reasons for looking at them is the expectation that
they may play a role in the construction of space–times. In numerical calculations they may
certainly provide a check on the numerical accuracy.

II. RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY

We begin by giving an outline of thefinite, regular initial value problem near spacelike
infinity. This has been introduced in Ref. 1, which we refer to for more details. It involves a gauge
which we refer to as theF gauge. We then recall the NPgauge, employed in Ref. 10, to discuss
the gravitational field near null infinity. Finally, we discuss how the NP gauge is related to theF
gauge.

A. The regular finite initial value problem near spacelike infinity

We want to discuss asymptotically flat solutions (M̃ ,g̃) to Einstein’s field equationsR̃mn

50 in a neighborhoodM̃a of spacelike infinity which covers parts of future and past null infinity.
The solutions arise from asymptotically flat data on a smooth spacelike Cauchy hypersurface
S̃,M̃ which are such that the intrinsic conformal structure onS̃ admits an extension with a certain
smoothness to a smooth compact manifoldS obtained fromS̃ by adjoining a pointi which
represents spacelike infinity,S5S̃ø$ i %. We assume that the solution, i.e., the evolution in time of
these data, possesses a smooth conformal extension (M ,g,Q) such that we can writeM
5M̃øJ 2øJ 1, whereJ 6.R3S2 represent, respectively, future and past null infinity andQ

denotes a smooth ‘‘conformal factor’’ onM such thatQ.0 and g5Q2g̃ on M̃ while Q50,
dQÞ0 on J6.

To analyze in detail the consequences of the field equations in a neighborhood of spacelike
infinity which covers parts ofJ6, the above-mentioned situation has been discussed in Ref. 6 in
terms of a certain principal fiber bundleMa8→Ma with projectionp, four-dimensional base space
Ma , and bundle spaceMa8 which is a five-dimensional manifold with boundary and edges. To
describe this setting further we need to introduce some notation.

We employ the two-components spinor and space-spinor formalisms as used in Ref. 6 where
eab ,eab are the antisymmetric spinors withe0151, e0151. We settaa85e0

aē08
a81e1

aē18
a8. By

SU~2! will be denoted the group of 232 matricest5(ta
b) satisfying

eact
a

bt d
c 5ebd , tact b

a t d
c 5tbd ,

and by U~1! its subgroup of diagonal matrices. A basis of the Lie algebra of SU~2! is then given
by the 232 matrices
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u15
1

2 S 0 i

i 0D , u25
1

2 S 0 21

1 0 D , u35
1

2 S i 0

0 2 i D , ~II.1!

of which u3 generates U~1!.
In the following will be described in detail the regular finite initial value problem at spacelike

infinity formulated in Ref. 6. Though we shall remark in passing on the construction of the
manifold Ma8 and the underlying gauge conditions, we refer for the full details to the original
article. The manifoldMa8 is given by

Ma85S ~t,r,t !PR3R3SU~2!u0<r,a,2
v

r
<t<

v

r D ,

wherea is a positive real number andv5v(r,t) a smooth non-negative function, given in the
following, such thatv/r extends to a smooth positive function withv/r→1 asr→0. By r, and
t will also be denoted the projections ofMa8 onto the first and second component, respectively, of
R3R3SU~2!. Then any coordinate system on SU~2! will define together with the functionsr and
t a coordinate system onMa8 . There will, however, arise no need for us to introduce coordinates
on SU~2!. We denote the projection onto the third component ofR3R3SU~2! by t and regard the
SU~2!-valued functiont as a ‘‘coordinate’’ onMa8 .

The natural action on the right of U~1! on SU~2! induces a smooth action of U~1! on Ma8 . The
quotientMa8/U~1! under this action will be denoted byMa and the induced projection ofMa8 onto
Ma by p. We shall writeN5p(N8) for any subsetN8 of Ma8 . The following subsets ofMa8 will
be important for us:

J865S t56
v

r
,r.0D.R3S3,

I 85$utu,1,r50%.R3S3, I 865$t561,r50%.S3,

C85$t50%, I 805$t50,r50%5C8ùI 8.S3.

Because they cover only a part of null infinity close to spacelike infinity, we should have denoted
the first sets more precisely byJa8

6 but we dropped the subscripta for convenience. By definition
the part of the physical manifoldM̃ which is covered by Ma is given by M̃a

5Ma\(J2øJ1øI øI 2øI 1) the setsJ6 representfuture and past null infinity, respectively,
while the setI representsspacelike infinityfor M̃a and the metric induced on it byg̃. ThusM̃a

covers a neighborhood of spacelike and null infinity inM̃ . The edgesI 6.S2 of Ma at which
future and past null infinity, respectively, touches spacelike infinity will play an important role in
the following. We shall refer to the setC as theinitial hypersurfacesince by definitionCùM̃a

5C\I 05S̃ùM̃a . There exists a neighborhoodBa of i in S and smooth surjective mapp8:C
→Ba which is injective onC\I 0 and which mapsI 0 onto i.

As described in Ref. 6, the manifoldMa8 is obtained essentially by liftingMa into the bundle
of normalized~with respect toeab) spin frames. The setI 80.SU~2! corresponds to the set of
normalized~with respect toeab andtab) spin frames at the pointi. With each such spin frame we
associate a unit tangent vector ofSat i. With this vector we associate in turn a curve throughi in
Ba and extend the spin frame along this curve by a certain transport process. Thus we obtain spin
frames at each point ofBa\$ i %. These frames are transported offBa\$ i %.C\I 0 into the space–time
Ma by a certain propagation law along conformal geodesics orthogonal toC. The latter are given
in our description ofMa8 by the curvesr5const,t5const witht a natural parameter along them.
Since for given unit tangent vector ati the spin frame defining it is determined up to a phase
factor, the spin frames at points ofMa\(I øI 2øI 1) are also given up to multiplications by phase
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factors, which correspond to the action of the group U~1!. The transport laws as well as further
details of the gauge conditions are encoded in the form of the data and certain properties of the
unknowns for the reduced equations.

Since it turns out to be most convenient, we will carry out all our calculations on the manifold
Ma8 and use for the subsets ofMa8 introduced previously the same names as for their images under
p.

We denote byZui
the vector field generated byui and the obvious action of SU~2! on Ma8 and

define complex vector fieldsX152(Zu2
1 iZu1

), X252(Zu2
2 iZu1

), X522iZu3
which satisfy

the following commutation relations:

@X,X1#52X1 , @X,X2#522X2 , @X1 ,X2#52X. ~II.2!

The conformal field equations, in the form used in Ref. 6, are given in a particular gauge
~coordinate and frame! which is explained, together with the equations, most naturally in the
context ofnormal conformal Cartan connections~cf. Ref. 14!. Again, we shall not go through the
complete argument but just describe the unknowns and equations. To obtain the equations onMa8 ,
we use the fact that the solder and the connection forms on the bundle of spin frames induce
corresponding formssaa8,va

b on Ma8\I 8 which extend smoothly toMa8 . The metric
eabēa8b8s

aa8sbb8 on Ma8 is degenerate because^saa8,X&50 ~the angle brackets denoting the dual
pairing!, but it descends to the Lorentz metricg on p(Ma8\I 8).

The equations are written as equations for the ‘‘vector’’-valued unknown

u5~c0
ab ,c ab

1 ,c6
ab ,x~ab!cd ,jabcd, f ab ,Q~ab!cd ,Qg

g
ab ,fabcd!,

whose components have the following meaning. We consider the smooth vector fields

caa85c0
aa8]t1c1

aa8]r1c1
aa8X11c2

aa8X2 ,

which satisfy ^saa8,cbb8&5eb
aēb8

a8 on Ma8\I 8. All fields are written in space spinor notation
based on the vector field&]t5taa8caa8 . Sincetaa8caa8 is invariant under the action of U~1! it
descends to a vector field onp(Ma8\I 8) which is timelike, has normtaa8t

aa852, and is orthogonal
to S̃. We have

caa85
1

&
taa8]t2tb

a8cab ~II.3!

with cab[t (a
b8cb)b85c ab

0 ]t1c1
ab]r1c ab

1 X11c ab
2 X2 . The connection defines connection

coefficientsGabcd5tb
a8Gaa8cd5tb

a8^vcd,caa8& which can be decomposed in the form

Gabcd5
1

&
~jabcd2xabcd!5

1

&
~jabcd2x~ab!cd!2

1

2
eabf cd ,

with fields satisfyingxabcd5xab(cd) , jabcd5j (ab)(cd) , f ab5 f (ab) . The curvature is represented
by the rescaled conformal Weyl spinor fieldfabcd5f (abcd) and by a spinor fieldQabcd

5Qab(cd) which is the Ricci spinor field of a certain Weyl connection forg̃.
The pull backp* Q, again referred to as the conformal factor and denoted byQ, extends

smoothly toMa8 and is known in our gauge explicitly. It is given by

Q5
V

r S 12t2
r2

v2D , ~II.4!

and appears, together with the one-form
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dab52r
Uxab2rDabU2r2DabW

~U1rW!3 ,

~with xab as given in Appendix 2! which characterizes in a certain way the difference between the
Levi-Civita connection ofg and the above-mentioned Weyl connection, as coefficient in the
conformal field equations. We have set here

V5
r2

~U1rW!2 ,

v[2V~2DabVDabV!21/25r~U1rW!$U212rUxabDabU2r2DabUDabU12r2UxabDabW

22r3DabUDabW2r4DabWDabW%21/2, ~II.5!

where the smooth functionsU5U(r,t), W5W(r,t,) which satisfyU51 andW5 1
2mADM on I 0,

are given as part of the initial data on the initial hypersurfaceC8, on whichDab is the intrinsic
covariant derivative. Note that the fieldsV, v, dab do not depend ont. The conformal factor
satisfies the relations~cf. Ref. 14!

Q.0 on Ma8 , $Q50%5J82øI 82øI 8øI 81øJ81,
~II.6!

caa8~Q!Þ0, eabēa8b8caa8~Q!cbb8~Q!50 on J86.

In the following we shall refer to the coordinatest, r, t, the frame$caa8%, and the conformal gauge
defined by~II.4! as theF gauge.

1. The conformal evolution equations

We recall here a few general features of the conformal field equations and refer again to Ref.
6 for more details. The conformal field equations imply onMa8 evolution equations of the form

$A0]t1A1]r1A1X11A2X2%u5Cu, ~II.7!

whereA0,A1,A6,C denote matrix-valued functions which depend onu and the coordinates. The
system is, foru close to the data given in the following and for the coordinates taking values on
Ma8 nearC8, symmetric hyperbolic. Writingu5(v,f) with

v5~c ab
0 ,c ab

1 ,c ab
6 ,x~ab!cd ,jabcd, f ab ,Q~ab!cd ,Qg

g
ab!, f5~fabcd!, ~II.8!

the evolution equations forv are obtained, with our assumptions on the gauge, from the structural
equations of the normal conformal Cartan connection associated withg. They read explicitly

]tc
0

ab52x~ab!
e fc e f

0 2 f ab ,

]tc
a

ab52x~ab!
e fc e f

a , a51,1,2,

]tjabcd52x~ab!
e fje f cd1

1

&
~eacx~bd!e f1ebdx~ac!e f! f e f2&x~ab!(c

ef d)e

2
1

2
~eacQ f

f
bd1ebdQ f

f
ac!2 iQmabcd,

]t f ab52x~ab!
e ff e f1

1

&
Q f

f
ab , ~II.9!
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]tx~ab!cd52x~ab!
e fxe f cd2Q~cd!ab1Qhabcd,

]tQ~ab!cd52x~cd!
e fQ~ab!e f2]tQhabcd1 i&de

(amb)cde,

]tQg
g

ab52x~ab!
e fQg

g
e f1&de fhabe f ,

where habcd5
1
2(fabcd1fabcd

1 ) and mabcd52( i /2)(fabcd2fabcd
1 ), with

ta
a8tb

b8tc
c8td

d8f̄a8b8c8d85fabcd
1 , denote the electric and the magnetic part offabcd, respec-

tively. These equations are of the form

]tv5K~v !1Q~v,v !1L~f!, ~II.10!

with a linear functionK and a quadratic functionQ of v, both with constant coefficients, and a
linear functionL of f with coefficients which depend on the coordinates. We haveL50 on I 8.
The evolution equations forf, derived from the Bianchi identities, are genuine partial differential
equations. They will be considered in more detail in the following.

2. The initial data

Consequences of the finite regular initial value problem have been worked out so far for
Cauchy data which are time symmetric and admit a smooth extension through spacelike infinity.
In fact, it has been assumed in Ref. 6, as will be done in the following, that the conformal structure
is analytic near spacelike infinity. We note that this condition is imposed only for convenience and
could be relaxed. The free Cauchy data onS̃ are then given by the conformal structure of a smooth
metric h on S which is analytic in someh-normal coordinates neari.

We assumeh to be given neari in a certain conformal gauge, the cngauge~cf. Ref. 6!. This
reduces the freedom of performing conformal rescalingsh→u2h to the choice of the four real
parametersu( i ),u ,a( i ), the value ofu in a neighborhood ofi then being determined by the
conformal gauge. We assume thatBa is a convexh-normal neighborhood ofi and thatr descends
to a radial normal coordinate onBa .

The metrich̃ induced byg̃ on S̃ is related toh by a rescalingh̃5V22h, where the conformal
factor V satisfiesrV21/2→1 asr→0 and the Lichnerowicz~Yamabe! equation

~DaDa2 1
8r !~V21/2!50. ~II.11!

HereD denotes the covariant derivative andr the Ricci scalar ofh. The form~II.5! of V in terms
of the functionsU andW is a consequence of this equation and the required asymptotic behavior
of V, which ensures thath̃ is asymptotically flat.

The initial data onC8 for the conformal field equations are derived fromh andV. They are
given by

c0
ab50, c1

ab5rxab , c ab
1 5zab1r č ab

1 , c ab
2 5yab1r č ab

2 ,

x~ab!cd50, jabcd5&rǧabcd, f ab5xab , ~II.12!

Qabcd52
r2

V
D (abDcd)V1

1

12
r2rhabcd, fabcd5

r3

V2 ~D (abDcd)V1Vsabcd!,

with xab , yab , zab , and the expressionhabcd of the metrich in space spinor notation as given in
Appendix 2, andsabcd5s(abcd) the trace free part of the Ricci tensor ofh.

In chapter Sec. IV A we shall discuss how the coefficientsčab
6 ,ǧabcd defining the frame and

the connection coefficients are determined onC8 by the ~three-dimensional! structure equations
from r andsabcd. The observation~cf. Ref. 6! that the above-mentioned data extend smoothly to
I 80,C8 is most important for our construction.
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3. The transport equations on I

At first sight it may appear that the initial data onS̃, thus in particular onC8, should be
complemented by boundary data onI 8 for the solutions of Eq.~II.7! to be uniquely determined.
However, it turns out that for any smooth solution to the evolution equations onMa8 which
coincides onC8 with the above-mentioned initial data, we have the important relation

A150 on I 8. ~II.13!

As a consequence, Eq.~II.7! reduces to a symmetric hyperbolic system of the form$A0]t

1A1X11A2X2%u5Cu on I 8, which allows us to determine the unknownu on I 8 uniquely in
terms of the value ofu on I 80. Thus we find, as was to be expected, that any smooth solution of
~II.7! on Ma8 taking onC8 our initial data is determined uniquely by its data onS̃.

More generally, by applying repeatedly the derivative operator]r to the evolution equations,
restricting toI 8, and observing~II.13!, we obtain symmetric hyperbolic transport equations

$A0]t1A1X11A2X2%up5Cpup1gp on I 8, p50,1,2,..., ~II.14!

for the quantitiesup5(]r
pu)u I 8 . Here the matrix-valued functionCp and the vector valued func-

tion gp depend onp and the quantitiesu0,...,up21, but the matricesA0,A6 are universal in the
sense that they depend neither onp nor on the initial data. We shall employ the above-mentioned
notation more generally, such that applying it to the fieldssabcd andr on the Cauchy hypersurface
we havesabcd

p 5(]r
psabcd)u I 80, andr p5(]r

pr )u I 80, respectively.
To integrate the transport equations~II.14! on I 8, we expand all fields in terms of the matrix

elements of unitary representations of SU~2! which are given, in terms of the matrix elements
(t b

a )a,b50,1 of the two-dimensional standard representation oftPSU~2!, by the complex-valued
functions

SU~2!{t→Tm
j
k~ t !5S m

j D 1/2S m
k D 1/2

t (b1
(a1

¯tbm) j
am)k

, T0
0

0~ t !51,

j ,k50,...,m, m51,2,3,... . ~II.15!

Here, as in the following, setting a string of indices into brackets with a lower indexk is meant to
indicate that the indices are symmetrized and thenk of them are set equal to 1 while the remaining
ones are set equal to 0. The functionsAm11Tm

j
k(t) form a complete orthonormal set in the

Hilbert spaceL2(m,SU~2!), where m denotes the normalized Haar measure on SU~2!. Under
complex conjugation we have

Tm
j
k~ t !5~21! j 1kTm

m2 j
m2k~ t !, tPSU~2!,

and, for 0<k, j <m, m50,1,2,..., we have withbm, j5$ j (m2 j 11%1/2,

XTm
k

j5~m22 j !Tm
k

j , X1Tm
k

j5bm, jTm
k

j 21 , X2Tm
k

j52bm, j 11Tm
k

j 11 . ~II.16!

A function f satisfying a relationX f52s f with an integer or half-integer numbers, is said to have
spin weights. We note the spin raising~lowering! property of the action ofX6 on such functions
implied by ~II.2!, i.e., X X6 f 52(s61)X6 f . By construction of the manifoldMa8 any function
occurring in our formalism has a well-defined spin weight. This leads to a simplification of the
expansion in terms of the functionsTm

k
j . The general form of these expansions has been dis-

cussed in detail in Ref. 6 and will be assumed here without further explanation.
The quantitiesu0,u1,u2 have been determined in Ref. 6. They are given here~with a correc-

tion and a useful change of notation! at the beginning of Sec. IV A. The functionsu3 will be
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calculated in Sec. IV A. The quantitiesup, p52,3,... have been shown~cf. Ref. 6! to develop a
certain type of logarithmic singularity on the setsI 86 unless the free datumh on S satisfies the
asymptotic regularity condition

D (aqbq
¯Da1b1

babcd)~ i !50, ~II.17!

for q50,1,2,..., where the spinor fieldbabcd5b(abcd) represents the Cotton tensor ofh. The values
of the functionsup, p<3, which will be given in the following, have been calculated onI 8 under
the assumption that~II.17! is satisfied forq<1. The analysis of the quantitiesup, to the extent to
which it has been carried out in Ref. 6, indicates another potential source for a singular behavior
of the fieldsup, p>3, at I 86. This will be discussed further in Sec. IV A.

B. The NP gauge

For simplicity we restrict our discussion now to the future ofS̃ in M, we refer to future null
infinity simply as to null infinity and we denote it byJ. In the following we shall describe a
certain class of gauge conditions on~M, g! near null infinity, referred to as the NPgauge, which
comprise certain requirements on the conformal gauge, certain coordinates, and a certain ortho-
normal frame field. Though this gauge is known, our description will be quite detailed, because we
will have to refer to it later. The Levi-Civita connection induced by the conformal metricg will be
denoted by¹.

Suppose$Ead8
+ % is a smooth frame field, satisfyingg(Eaa8

+ ,Ebb8
+ )5eabēa8b8 , which is defined

in a neighborhood of null infinity. We call it an ‘‘adapted frame,’’ if it satisfies the following
conditions. The vector fieldE118

+ is tangent to and parallel propagated along null infinity. On the
neighborhood on which the frame is given there is exists a smooth functionu+ which induces an
affine parameter on the null generators ofJ such thatE118

+ (u+)51, which is constant on null
hypersurfaces transverse toJ, and which satisfiesE008

+a
5gab¹bu+. Thus E008

+ is tangent to the
hypersurfaces$u+5const% and geodesic. The fieldsE118

+ ,E008
+ as well as the fieldsE018

+ ,E108
+ which

are necessarily tangent to the slices$u+5const%ùJ, are parallelly propagated in the direction of
E008

+ .
In terms of its NP-spin coefficients~note the slight difference of our notation with that of Ref.

2!

Gaa8bc
+

5 1
2$Eaa8

+a Eb18
+b ¹aEc08b

+
1Eaa8

+a Ec18
+b ¹aEb08b

+ %, ~II.18!

an adapted frame is characterized by the properties

G10811
+

50, G11811
+

50 on J,

~II.19!

G10800
+

5Ḡ0180808
+ G11800

+
5Ḡ0180818

+
1G01801

+ , G008ab
+

50, a,b50,1 near J.

The first of these conditions tells us thatJ is shear free. This well-known fact follows from the
equation for the trace free partsab of the Ricci tensor of the conformal vacuum metricg,

Qsab5 1
2gab¹g¹gQ22¹a¹bQ. ~II.20!

Transvection withE108
+a E108

+b and restriction toJ givesG10811
+ E008

+ (Q)50, while E008
+ (Q)Þ0 onJ.

We shall combine now the construction of an adapted frame with the freedom to perform rescal-
ings

g→g!5u2g, Q→Q!5uQ ~II.21!
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with some positive functionu, to obtain another adapted frame$Eaa8
• % for which we get further

simplifications besides~II.19!. We start with an adapted frame$Eaa8
+ % as described previously. For

arbitraryu.0 and for arbitrary functionp.0 which is constant on the generators ofJ we set

E118
•

5u22pE118
+ and u•~u+!5E

u
*
+

u+

u2~u8!p21~u8!du81u
*
• on J, ~II.22!

where the integration is performed along the generators ofJ. ThenE118
• will be parallelly propa-

gated andE118
• (u•)51 will hold. We assume thatu+5u

*
+ andu•5u

*
• on C and set

E008
•

5p21E008
+ , E118

•
5u22pE118

+ , E018
•

5u21E018
+ on C. ~II.23!

SinceC is diffeomorphic toS2 and thus carries~up to diffeomorphisms! precisely one Rie-
mannian conformal structure, we can fix coordinatesx35q, x45w as well as the functionu on C
such that the metrich! induced by g! on C is given by the standardS2-metric h!5dq2

1sin2 qdw2. Using the transformation lawsG10800
•

5p21@G10800
+

2E008
+ (logu)# and G01811

•

5pu22@G01811
+

1E118
+ (logu)# on C, we can achieve, by suitable choice ofdu andp,

G10800
•

50, G01811
•

50, E008
•

~Q!!5constÞ0 on C. ~II.24!

The transformationsab
! 52(2/u)$(¹a¹bu22/u¹au¹bu)2 1

4gab(¹g¹gu22/u¹gu¹gu)%1sab

of the trace free partsab of the Ricci tensor under the rescaling~II.21! implies a transformation of
F225

1
2sabE118

+a E118
+b into F22

! 5 1
2sab

! E118
•a E118

•b which yields, with the assumption thatF22
! 50 onJ,

on the generators ofJ the ordinary differential equation~ODE!

E118
+

~E118
+

~u!!2
2

u
~E118

+
~u!!22uF2250. ~II.25!

Equation~II.25! can be rewritten as a linear ODE foru21 which can be solved on the generators
of J with u.0. Using the initial datau, E118

+ (u) on C determined previously, we solve foru to
obtain

F22
! 50, G01811

•
50 on J. ~II.26!

Here the second equation is a consequence of the first, the field equations, and~II.24!. We assume
in the following ~II.22!. We observe that the induced metric on the sections$u•5const% is given
as a consequence everywhere onJ by theS2-standard metric.

Onceu and E118
• have been fixed onJ, the vector fieldE018

• ~whenceE108
• ) tangent to$u•

5const% is determined up to rotations. We choose some smooth fieldE018
• onJ, solve the equation

E118
•

~c!52 iE108
•a E118

•b ¹b
!E018a

• ~II.27!

for the functionc with initial value c50 on C and replaceE018
• by eicE018

• to achieve

G11801
•

50 on J. ~II.28!

Observing the above-mentioned simplifications, we contract the analog of~II.20! for g! with
E018

•a E108
•b to conclude that¹a

!¹!aQ!50 on J. A further contraction withE008
•a E118

•b gives

E118
•

~E008
•

~Q!!!50, i.e., E008
•

~Q!!5const on J, ~11.29!

while a contraction withE008
•a E018

•b yields nowE018
• (E008

• (Q!))5G11800
• E008

• (Q!), which implies
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G11800
•

50 on J. ~II.30!

To fix alsodu on J, we use the conformal transformation law for the Ricci scalar, i.e.,

R@g!#5
1

u2 R@g#1
12

u2 ¹a
!u¹!au2

6

u
¹a

!¹!au. ~II.31!

If we require thatR@g!#50 alongJ, this equation takes on the generators of the null hypersurface
J the form

E118
•

~E008
•

~u!!2
2

u
E118

•
~u!E008

•
~u!5F!, ~II.32!

of a linear ODE for the unknownE008
• (u), where the right-hand side

F!5ReH E018
•

~E108
•

~u!!22G01801
• E108

•
~u!2

2

u
E018

•
~u!E108

•
~u!1

1

12u
R@g#J

is given in terms of quantities which have been determined already onJ. Using the initial value
E008

• (u)5p21uG10800
+ uC , fixed onC by ~II.24!, we can integrate the equation to achieve

R@g!#50, G10800
•

50 on J, ~II.33!

where the second equation follows again from our previous results and the field equations.
We do not require conditions of higher order on the conformal gauge. Assuming a conformal

gauge as described here, we shall refer to an adapted frame$Eaa8
• % satisfying the above-mentioned

conditions as a NP frame, and to a normalized spin frameea
•A[$o•A,i •A% which implies a NP

frame as to a NP-spin-frame.
We extend the coordinatesx3,x4 to J such that they are constant on the null generators ofJ.

As described previously, we define null hypersurfaces$u•5const% transverse toJ and we denote
by r • the affine parameter on the null generators of these hypersurfaces which satisfiesE008

• (r •)
51 and, onJ, r •50. The coordinatesx3,x4 are extended such that they are constant on the null
generators of$u•5const%. Thus we get aBondi-type system(u•,r •,x3,x4) in some neighborhood
of null infinity. Occasionally we shall change from the coordinatesq, w, to a complex stereo-
graphical coordinate given byz5eiwctg(q/2). We write the volume element and the volume
form alternatively

ds252~dq21sin2 q dw2!52P~z!22dzdz̄, e5sinq dq`dw5@2P~z!#22dz`dz̄,

where we setP(z)5 1
2(11zz̄). We shall refer to the conditions on the conformal scaling, the

frame field, and the coordinates as theNP gauge.

C. Relating The NP gauge to the F gauge

While the NP gauge is hinged on null infinity, the F gauge is based on a Cauchy hypersurface
and these gauge conditions are in general completely different. In the following we will study the
transformation which relates one to the other. It is important for this that the conformal factorQ,
whenceJ, is known explicitly in the F gauge.

The vector fields$caa8% tangent to the five-dimensional bundle spaceMa8 are not directly

related to the NP gauge on the subsetMa\I of M. Let S2.U{p→
s

5s(p)PSU~2! be a smooth
local section, defined on some open subsetU of S2, of the Hopf fibration SU~2!→SU~2!/U(1)

.S2. It induces a smooth sectionU3R3R{(p,t,r)→
s

(s(p),t,r)PMa8 . We denote the image
of S by Ma* . The vector fields tangent tos(U) which have projection identical to that ofX6 are
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of the formX61a6X with some smooth functionsa6 on s(U), satisfyinga252ā1 . Because
of ~II.2! a6 cannot vanish on open subsets ofs(U). Consequently, the tangent vector fieldscaa8

*

of Ma* satisfyingp* (caa8
* )5p* (caa8) are given onMa* by

caa8
!

5caa81~a1c aa8
1

1a2c aa8
2

!X,

with functionsa6 which are independent oft andr. The connection coefficients defined onMa*
by the connection formv c

b and the vector fieldscaa8
* are given by

Gaa8
* b

c5Gaa8
b

c1~a1c1
aa81a2c2

aa8!~e0
bec

02e1
bec

1!.

In the remaining part of this section we shall work onp(Ma8) and denote the projection of the
vector fieldscaa8

* , which define a smooth orthonormal frame field onp(Ma* \I 8), and the pull-
back ofGaa8

* b
c by Sagain bycaa8

* andGaa8
* b

c . Similarly, the projection ofJ8ùMa* andI 81ùMa*
will be denoted byJ and I 1.

The frame field$caa8
* %, which is in general not adapted to null infinity, will now be related

close toI 1 to an adapted frame$Eaa8
+ %. On J the vector fieldE118

+ must be of the form

E118
+a

5 f ¹aQ, ~II.34!

where¹ andQ denote the Levi-Civita connection and the conformal factor associated with the F

gauge. The requirement 05E118
+b ¹bE118

+a
5 f ¹bQ¹b f ¹aQ1 f 2¹b( 1

2¹aQ¹aQ) thatE118
+a be paral-

lelly propagated, gives after contraction with a vector fieldZ transverse toJ the ODE

¹aQ¹a~ log f !52
Z~ 1

2¹bQ¹bQ!

Z~Q!
~II.35!

for f on the generators ofJ. To fix f, we setf 5 f 05const.0 on some sectionC of J. The function
u+ satisfyingE118

+a (u+)51 on J andu+5u
*
+ on C can be now be determined.

Let lb
aPSL(2,C) satisfy

Eaa8
+

5l a
b l̄a8

b8cbb8
* . ~II.36!

Rewriting ~II.34! in the formE118
+

5 f cbb8
* (Q)eabēa8b8caa8

* , we find the relations

l 1
0 l̄08

185 f c118
* ~Q!, l 1

0 l̄18
1852 f c108

* ~Q!, l 1
1 l̄18

185 f c008
* ~Q!. ~II.37!

From ~II.36! we obtainl 1
0 E 018

+
5l 0

0 E118
+

2l̄0818c108
* 2l̄18

18c118
* . Applying this to the function

u+, we get

l 0
0 5l̄08

18c108
* ~u+!1l̄18

18c118
* ~u+!. ~II.38!

Together with the condition det(l b
a )51 the relations~II.37!, ~II.38! allow us to determine the

matrix elementsl b
a on J up to replacementsl b

a →l b
a h c

b with (h b
a )5diag(eia,e2ia)PU(1).

After making here an arbitrary choice, the adapted frame$Eaa8
+ % is determined uniquely nearJ.

To determine a NP frame$Eaa8
• % nearJ, we need to find an appropriate rescaling~II.21! and

a scaling factorp. We set

caa8
!

5u21caa8
* , Eaa8

•
5L a

b L̄b8
a8cbb8

! ~II.39!

with Lb
aPSL(2,C). Assuming~II.22!, we haveE118

•a
5 f !¹!aQ! with
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f !5
f p

u
, E008

•
~Q!!5

1

f ! on J. ~II.40!

We choose nowu, du, and coordinatesx3,x4 such that the induced metric onC is given by the
S2-standard metric and, withp chosen such thatp5u on C, conditions~II.24! are satisfied with
E008

• (Q!)5 f 0
21.

Following the procedure of Sec. II B, we can determine the conformal factoru on J such that
~II.26! is satisfied. The transformationL b

a can be determined in the same way asl b
a . Imposing

condition ~II.28!, we determineL b
a up to U~1! transformations onC. Conditions~II.29!, ~II.30!

will now be satisfied as well and we can determinedu on J such that~II.33! holds. Extending the
tetrad to a neighborhood ofJ such that it is parallelly propagated in the direction ofE008

• , we get
the desired NP frame.

In our later calculations we will need the quantitiesE008
• (L b

a ). Using our gauge condition
G008ab

•
50 and the transformation laws for the connection coefficients,

Gaa8bc
!

5
1

u
$Gaa8bc

* 1ea(bcc)a8
* ~ logu!%,

Eaa8
•

~Lb
c!52L f

aL̄ f 8
a8L

h
cG f f 8

! b
h1Lb

dGaa8
• d

c ,

whereGaa8bc
! denotes the connection coefficients with respect to¹! and$caa8

! %, we find

E008
•

~Lb
c!52L f

0L̄ f 8
08L

h
cG f f 8

! b
h . ~II.41!

In the above-mentioned considerations we had to fix various quantities by prescribing data on
the sectionC. When we shall determine later the expansion of a NP frame nearI 1, it will be
natural to try pushingC to I 1. A priori it is not clear, however, whether this can be done in a
continuous way. We shall see, that for certain quantities the limits toI 1 do exist, while other
quantities can only be described in terms of their growth behavior nearI 1.

III. THE NP CONSTANTS

In 1965 Newman and Penrose discovered certainnontrivial quantities, defined by certain
integrals over a two-dimensional cross section ofJ1, which are absolutely conserved in the sense
that their values do not depend on the choice of the section~cf. Refs. 9 and 10!. The interpretation
of these ten real NP constants is still open. In the case where the space–time admits a smooth
conformal extension containing a pointi 1 ~‘‘future timelike infinity’’ ! whose past light cone
representsJ1, these constants are essentially given by the five complex components of the
rescaled conformal Weyl spinor~cf. Refs. 10 and 15!. However, these quantities do not allow us
a simple interpretation either. More interesting is the case of stationary vacuum space–times. In
this case the constants have been calculated and have been given in the form (mass)
3(quadrupole moment)2(dipole moment)2 ~cf. Refs. 10 and 16!.

If the evolution of the field in time is not given explicitly as in the presence of a timelike
Killing vector field, there appears to be no obvious way to calculate the NP constants. It turns out,
however, that under suitable assumptions on the asymptotic behavior of the field near spacelike
infinity the constants can be calculated by integrating the transport equations onI 8 to a sufficiently
high order. In the following we shall derive a formula for the constants in terms of quantities
which can be determined by solving the transport equations.

To explain the original formula~cf. Ref. 10!, which is given in the Bondi–Sachs–Newman–
Penrose framework, let~u, r, q, w! denote Bondi coordinates on the physical space–time, where
r denotes an affine parameter along the generators of the null hypersurfaces$u5const% and the
generators are labeled by the standard coordinates~q, w! on the two sphere. The null frame$Ẽaa8%
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as well as a corresponding spinor dyad$õA, ĩA%, both defined on the physical space–time, are
normalized with respect to the physical metricg̃. They are adapted to the Bondi coordinates such
that Ẽ0085] r .

We assume that the conformal space–time with metricg!
ªr 22g̃ admits a smooth extension

as r→` to a smooth Lorentz space with boundaryJ15$r •50% and that the functionsu•
ªu,

r •
ªr 21, q, andw extend such as to define a smooth system of Bondi-type coordinates nearJ1.

Furthermore, we assume that the frame$Eaa8
• % and the spinor dyad$o•A,i •A%, defined by

Eaa8
•

5r 22a2a8Ẽaa8 ,

~III.1!
o•A5rõA, i •A,5 ĩA,

such that they are normalized with respect tog!, extend to smooth frame, respectively, dyad near
J1. The results of Newman and Unti~cf. Ref. 17! then imply that$Eaa8

• % defines in fact a NP
frame.

Under our assumptions the componentc05cABCDõAõBõCõD of the conformal Weyl spinor
has an expansionc05c0

0r 251c0
1r 261O(r 27) with coefficientsc0

p which are independent ofr.
In terms of the physical space–time the NP constants are given with this notation by the integrals

Gm5 R 2Ȳ2,mc0
1 sinq dq dw, ~III.2!

which are calculated for fixed value ofu. The functions2Y2,m ,m522,21,0,1,2, denote spin-2
spherical harmonics~cf. Ref. 18! which are obtained from the standard spherical harmonics by

2Y2,m5
1

2A6
E018

•a E018
•b dadbY2,m5

1

2A6
Z2Y2,m . ~III.3!

Here d and Z denote the standard covariant differential operator on the unit two-sphere and the
‘‘edth’’ operator, respectively. In evaluating~III.2!, it will be important that the operatorZ is
defined with respect to the complex null vector fieldE018

• ~cf. Ref. 19!.
We reexpress the constants in terms of the fieldsg!,Eaa8

• ,o•A,i •A satisfying the NP gauge, in
particular ~II.33!. Using the componentf05rcABCDo•Ao•Bo•Co•D of the rescaled conformal
Weyl spinor, and performing the obvious lift toM 8, we obtain for the NP constants the formula

Gm52
1

2p R 2Ȳ2,mE008
•

~f0!dS da. ~III.4!

HeredS5sinq dq dw denotes the surface element on the cross section$r •,u•5const%,J1 anda
denotes a parameter on the fibers of the principal fiber bundleM 8→M . The second integration
can be performed without changing the result because the integrand is independent of the variable
a.

The values of these integrals are independent of the value of the constant defining the cross
section as well as of the choice of the Bondi coordinateu• itself. Thus they are invariant under
supertranslations~cf. Ref. 10!.

We shall determine the NP constants by integrating the transport equations onI 8. Since these
equations and their unknowns are given in the F gauge we express~III.4! in this gauge. Using
~II.39!, we obtain in the notation of Sec. II

Gm52
1

2p R 2Ȳ2,m

1

u4 $Lb
0Lc

0Ld
0Le

0@La
0L̄a8

08caa8
* ~fbcde!23fbcdeE008

•
~u!#

14uLb
0Lc

0Ld
0E008

•
~Le

0!fbcde%dS da. ~III.5!
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This is the expression for the NP constants which will be used in the calculations of Sec. IV C.

IV. TIME SYMMETRIC SPACE–TIMES

In this section we will use the assumptions of the regular finite initial value problem near
spacelike infinity and thus restrict our considerations to time symmetric space–times. We begin by
solving the third-order transport equations onI 8. This calculation is of interest for two quite
different reasons. First of all, it will give us a first insight into the potential source of singular
behavior of the quantitiesup pointed out in Sec. II A 3. Further, besides giving information on this
question of principle, the calculation will allow us to analyze the relation between the NP con-
stants and the initial data for asymptotically flat solutions. Under our assumptions, we will be able
to evaluate the integral~III.5! in terms of quantities derived from the initial data.

A. Solving the third-order transport equation

The solutionsup of Eq. ~II.14! have been given in Ref. 6 forp<2. Since they will be used in
the following calculations we reproduce them here, in a notation, though, which is more conve-
nient for a systematic discussion of the higher order expansion coefficients. We also take the
opportunity to correct a misprint in Ref. 6.

The solutionu0 of the transport equations~II.14! has the form

~cab
0 !052txab , ~cab

1 !050, ~cab
1 !05zab , ~cab

2 !05yab , jabcd
0 50,

~IV.1!
x~ab!cd

0 50, f ab
0 5xab , ~Qg

g
ab!

050, Q~ab!cd
0 50, fabcd

0 526m«abcd
2 ,

where m5mADM denotes the ADM mass of the initial data set. The spinors appearing on the
right-hand side of these and the following formulas are listed in Eq.~A10! of the Appendix. The
solutionu1 is given by

~cab
0 !15c01~t!xab , ~cab

1 !15xab , ~cab
1 !15c61~t!zab ,

~cab
2 !15c61~t!yab , jabcd

1 5S1~t!~eacxbd1ebdxac!, x~ab!cd
1 5K1~t!«abcd

2 ,

~IV.2!
f ab

1 5F1~t!xab , ~Qg
g

ab!
15t1~t!xab , Q~ab!cd

1 5T1~t!«abcd
2 ,

fabcd
1 5f1

1~t!X1W1«abcd
1 1@f2

1~t!1F3
1~t!W1#«abcd

2 2f1
1~2t!X2W1«abcd

3 ,

while u2 takes the form

~cab
0 !25@c1

02~t!1c2
02~t!W1#xab1c3

02~t!@X2W1yab1X1W1zab#,

~cab
1 !25c12~t!xab,

~cab
1 !25@c1

62~t!1c2
62~t!W1#zab1c3

62~t!X2W1xab ,

~cab
2 !25@c1

62~t!1c2
62~t!W1#yab1c3

62~t!X1W1xab ,

jabcd
2 5@S1

2~t!1S2
2~t!W1#~eacxbd1ebdxac!1S3

2~t!~eacybd1ebdyac!X2W1

1S3
2~t!~eaczbd1ebdzac!X1W11S4

2~t!~«abcd
1 X1W11«abcd

3 X2W1!,
~IV.3!

x~ab!cd
2 5@K1

2~t!1K2
2~t!W1#«abcd

2 1K3
2~t!habcd1K4

2~t!~eacybd1ebdyac!X2W1

2K4
2~t!~eaczbd1ebdzac!X1W11K5

2~t!~«abcd
1 X1W12«abcd

3 X2W1!,
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f ab
2 5@F1

2~t!1F2
2~t!W1#xab1F3

2~t!~X2W1yab1X1W1zab!,

~Qg
g

ab!
25@ t1

2~t!1t2
2~t!W1#xab1t3

2~t!~X2W1yab1X1W1zab!,

Q~ab!cd
2 5@T1

2~t!1T2
2~t!W1#«abcd

2 1T3
2~t!habcd1T4

2~t!~eacybd1ebdyac!X2W1

2T4
2~t!~eaczbd1ebdzac!X1W11T5

2~t!~«abcd
1 X1W12«abcd

3 X2W1!,

fabcd
2 5f1

2~t!X1X1W2«abcd
0 1@f2

2~t!X1W11f3
2~t!X1W2#«abcd

1 1@f4
2~t!1f5

2~t!W1

1f6
2~t!W2#«abcd

2 2@f2
2~2t!X2W11f3

2~2t!X2W2#«abcd
3 1f1

2~2t!X2X2W2«abcd
4 .

The t-dependent functions in these expressions are polynomials which are given in Appendix 3.
The calculation ofu3 is facilitated by the following properties of the transport equations

~II.14!. For p>1 they are of the form

]tv
p5Lpvp1 l p , Ba]afp5M pfp, ~IV.4!

where, using the notation~II.8!, we setvp5(]r
pv)u I 8 , fp5(]r

pf)u I 8 and denote byLp and l p a
matrix and vector-valued function respectively, of the quantitiesu0,...,up21, while M p denotes a
matrix-valued function which depends on the variablesu0,...,up21,vp. The matricesBa neither
depend onp nor on the initial data. Thus, given the quantitiesuq,q<p21, we can integrate the
first of equations~IV.4!, which is an ODE. To integrate the second equation, we expand the
quantitiesup in terms of the functionsTm

k
j given in ~II.15! and use~II.16! to reduce the integra-

tion to that of a system of ODEs.
To determine the initial data foru3 on I 80, we have to expand the unknowns~II.12! in terms

of r. Instead of prescribing the conformal metrich on the initial slice, which represents the free
datum, we shall prescribe, in a fashion consistent with the three-dimensional Bianchi identities,
certain curvature quantities and use the three-dimensional structure equations and the Yamabe
equation to determine the remaining quantities.

The conformal factor, which appears in the expressions~II.12!, is given in~II.5! in terms of
the functionsU andW. The functionU, which is determined locally byh near spacelike infinity,
is given, by a procedure explained in Ref. 6, in the form

U5 (
p50

`

Upr2p, ~IV.5!

with r-dependent coefficientsUp . As shown in Ref. 6, the Taylor expansion ofU in terms ofr
has in our gauge the form

U511 (
k54

`
1

k!
ûkr

k. ~IV.6!

For our calculations we shall need the coefficientÛ4 , which will be determined later in this
section.

The functionW, which contains global information on the free initial data, is determined by
solving the Yamabe equation on the initial hypersurface. We shall consider here a larger class of
functions which are subject to the Yamabe equation only in a small neighborhood of spacelike
infinity. The coefficients in the Taylor expansionW5W01W1r1 1

2W2r21(1/3!)W3r31O(r4)
have expansion~cf. Ref. 6!.

Wi5 (
m50

2i

(
k50

m

Wi ;m,kTm
k
~m/2! .
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They are restricted by the requirement that the Yamabe equation (habDaDb2 1
8r h)@W#50 holds

near$r50%, which implies the simplification

Wi5 (
k50

2

Wi ;2i ,kT2i
k
i , i<3. ~IV.7!

We get for the conformal factor and the trace-free part of its second covariant derivative

V5r22mr31@ 3
4m

222W1#r41@2 1
2m

313mW12W2#r5

1@ 5
16m

423m2W113W1
21 3

2mW22 1
3W32 1

12Û4#r61O~r7!,

~IV.8!

D (abDcd)V5@26m«abcd
2 #r1@~12m2236W1!«abcd

2 212~«abcd
1 X12«abcd

3 X2!W1#r2

1@~215m3196mW1236W2!«abcd
2 1~«abcd

1 X12«abcd
3 X2!~24mW128W2!

2 1
2~«abcd

0 X1X11«abcd
4 X2X2!W2#r31@~156W1

22150m2W1115m4181mW2

220W324Û41 1
12X1X2Û426X1W1X2W1!«abcd

2

1~«abcd
1 X12«abcd

3 X2!~30W1
2230m2W1115mW22 10

3 W32 5
6Û4!

1 1
2~«abcd

0 X1X11«abcd
4 X2X2!~3W1

21 3
2 mW22 1

3W32 1
12Û4!2 2

3xe(agbc
3 e

d)#r
4

1O~r5!.

From this we obtain as initial data foru3 on I 80,

~cab
0 !350, ~cab

1 !350, ~cab
1 !350, ~cab

2 !350,

jabcd
3 50, x~ab!cd

3 50, f ab
3 50, ~Qg

g
ab!

350,

~IV.9!

Q~ab!cd
3 53X1X1W2«abcd

0 1~272mX1W1148X1W2!«abcd
1 1~27m32288mW11216W2!«abcd

2

1~72mX2W1248X2W2!«abcd
3 13X2X2W2«abcd

4 ,

fabcd
3 5~«abcd

0 X1X11«abcd
4 X2X2!~9W1

22 3
2mW22W32 1

4Û4!

14~«abcd
1 X12«abcd

3 X2!~9W1
22 3

2mW225W32 5
4Û4!16«abcd

2 ~12W1
223mW2220W3

24Û41 1
12X1X2Û426X1W1X2W1!24xe(agbc

3 e
d)13sabcd

2 ,

wheregabcd5(2r)21(eacxbd1ebdxac)1ǧabcd denote the connection coefficients onC8.
We determine now how the functionsÛ4 , gabcd

3 andsabcd
2 are related to the free data on the

initial hypersurfaceC8. As shown in Ref. 6, the structure equations onC8, which relate the
connection coefficients to the curvature, read

1

&
H ]rǧ00ab1

&

r F ǧ0000zab2ǧ0011yab1
1

&
ǧ00abG J

5ǧ0000ǧ11ab2ǧ0011ǧ00ab2
1

2
sab002

1

6&
ryab ,

2211J. Math. Phys., Vol. 41, No. 4, April 2000 Bondi-type systems near spacelike infinity . . .

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.59.226.54 On: Wed, 10 Dec 2014 15:29:58



1

&
H ]rǧ11ab1

&

r F ǧ1100yab2ǧ1111yab1
1

&
ǧ11abG J

5ǧ1100ǧ11ab2ǧ1111ǧ00ab1
1

2
sab112

1

6&
rzab ,

and the components ofǧabcd have Taylor expansions

ǧ01ab50, ǧ00ab5
1

3!
ǧ00ab

3 r31O~r4!, ǧ11ab5
1

3!
ǧ11ab

3 r31O~r4!.

From this we get

ǧ0001
3 52

3

4&
s0001

2 , ǧ1101
3 5

3

4&
s0111

2 , ǧ0000
3 52

3

5&
s0000

2 ,

ǧ1100
3 5

3

5&
s0011

2 2
1

10&
r 2, ǧ0011

3 52
3

5&
s0011

2 1
1

10&
r 2, ǧ1111

3 5
3

5&
s1111

2 ,

and thus obtain for the quantityFabcd524xe(agbc
3 e

d)13sabcd
2 the concise expressions

F05 9
5s0

2, F153s1
2, F25 17

5 s2
22 1

15r
2, F353s3

2, F45 9
5s4

2, ~IV.10!

where we setFi5F (abcd) i
,si5s(abcd) i

, using the notation introduced in~II.15!.
In the cn gauge the curvature vanishes at zeroth and first order at spacelike infinity. At second

order this is in general not true and the prescription of the free data onS in terms of curvature
quantities has to be consistent with the cn gauge, the Bianchi identity, and the regularity condition
~II.17! for q51. The content of the cn gauge is expressed in second order in the curvature by the
conditions

DabD
abr 50, DabD

abscde f52 5
4DcdDe fr , D (abDcdse f gh)50 at i .

It follows that the spinor

tabcd e f gh5DabDcdse f gh2
1
3habcdDhse f gh,

whereDh denotes the Laplacian corresponding to the metrich, is symmetric in the first and the last
four indices separately. Using the Bianchi identity

Dabsabcd5
1
6Dcdr ,

we thus get

1
6DabDcdr 2 1

3Dhsabcd5te f
abcde f5ta

e
b

f
cde f5Da

eDb
fscde f1

1
6Dhsabcd,

whence

Da
eDb

fscde f5
19
24DabDcdr .

No further conditions are implied ati on the Ricci scalarr at this order. Finally, we get from
~II.17! for q51

Dh
(aDbcsde f)h50 at i .
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The above mentioned relations imply that the expansion oftabcd e f gh in terms of symmetric
spinors andeab’s can be expressed completely in terms of symmetrized twofold contractions of
this spinor, which in turn can all be expressed in terms of the symmetric spinorDabDcdr . Work-
ing out this expansion we get

DabDcdse f gh5h~ab
~e fD

cd
gh)r 2 5

15h
abcdDe fDghr at i , ~IV.11!

in our gauge. Going through the procedure described in Sec.~3.5! of Ref. 6 we gets(abcd) j

5sj
2r21O(r3) and r 5r 2r21O(r3) with

sj
25

3u22 j u

12 (
k50

4

Rk* S 4
j D 21/2

T4
k

j , r 25
2

A6
(
k50

4

Rk* T4
k
2 , ~IV.12!

where we setRk* 5 1
2(k

4)1/2D (abDcd)k
r * , with the star indicating that the quantities are given in our

gauge ati. The five real real numbersRk* contain precisely the information on the metrich which
can at this order be freely specified in the cn gauge.

We note that the Cotton spinor is then given ati by

Dabbcde f52 5
8$ea~bDcdDe f!r 1eb~aDcdDe f)r ,

and the deviation ofh from conformal flatness ati is encoded at this order in the symmetric spinor
DabDcdr ( i ).

From ~IV.10!, ~IV.12! we obtain

F05
27

20(
k50

4

Rk* T4
k
0 , F15

3

8 (
k50

4

Rk* T4
k
1 , F25

3

20A6
(
k50

4

Rk* T4
k
2 ,

F35
3

8 (
k50

4

Rk* T4
k
3 , F45

27

20(
k50

4

Rk* T4
k
4 .

Finally, we will calculate the coefficientÛ4 in the Taylor series~IV.6!. Only the coefficients
U0 , U1 , andU2 of the expansion~IV.5! contribute toÛ4 . These functions have the following
expansions~cf. Ref. 6 for the defining integrals!:

U05expH 1

4 E0

r

~Dr8216!
dr8

r8 J 511
1

4!
@&g1100

3 #r41O~r5!, ~IV.13!

where we used the expansion

Dr25261
2&

3
g1100

3 r41O~r5!.

Further we have, withL denoting the Yamabe operator,

U15
U0

2r E
0

r L@U0#

U0
dr85

1

2 F2
7&

36
g1100

3 2
1

48
r 2Gr21O~r3!. ~IV.14!

Finally, observing~IV.12!, we obtain

U252
U0

2r2 E
0

r L@U1#r8

U0
dr85O~r!.

Collecting results, we arrive at the expansion
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U511
1

4! F2
4&

3
g1100

3 2
1

4
r 2Gr41O~r5!

511
1

4! F2
3

10A6
(
k50

4

Rk* T4 2
k Gr41O~r5!. ~IV.15!

Since the initial datum for the conformal Weyl spinor is a nonlinear function of the basic
quantities and the transport equations are quadratic in the unknowns, we have to make use of the
Clebsch–Gordan expansions of products likeT2

k
mT2

l
n . These are readily calculated by using the

definition ~II.15!. For the quantities relevant in our calculation we thus obtain

X2W1X1W152 (
k50

4

akT4
k
212b, W1

25 (
k50

4

akT4
k
21b,

W1X2W152
A6

2 (
k50

4

akT4 3
k , W1X1W15

A6

2 (
k50

4

akT4 1
k , ~IV.16!

~X2W1!25A6(
k50

4

akT4 4
k , ~X1W1!25A6(

k50

4

akT4 0
k ,

with coefficients

a05
2

A6
W1;2,0

2 , a15
2

)
W1;2,0W1;2,1, a25

2

3
~W1;2,0W1;2,21W1;2,1

2 !,

~IV.17!

a35
2

)
W1;2,2W1;2,1, a45

2

A6
W1;2,2

2 , b52
2

3 S W1;2,0W1;2,22
1

2
W1;2,1

2 D .

It was shown in Ref. 6 that the quantityf i
3 has an expansion of the form

f i
35 (

m5u422i u

q

(
k50

m

f i ;m,k
3 Tm

k
m/2221 i . ~IV.18!

Using the above-mentioned results in the last equation of~IV.9!, this expansion reduces to

f i ;m,k
3 50 for i 5$0,...,4% and m>8,

f0;6,k
3 522A30W3;6,k , f1;6,k

3 5210)W3;6,k , f2;6,k
3 5220W3;6,k ,

f3;6,k
3 5210)W3;6,k , f4;6,k

3 522A30W3;6,k ,

f0;4,k
3 518A6ak23A6mW2;4,k1 3

2 Rk* , f1;4,k
3 59A6ak2 3

2A6mW2;4,k1 3
4 Rk* , ~IV.19!

f2;4,k
3 518ak23mW2;4,k1

3

2A6
Rk* , f3;4,k

3 59A6ak2
3

2
A6mW2;4,k1

3

4
Rk* ,

f4;4,k
3 518A6ak23A6mW2;4,k1 3

2 Rk* ,

f i ;2,k
3 50 for i 5$1,2,3%, f2;0,0

3 50.
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Given these data onI 80, we are in the position to solve the transport equations onI 8. The first of
the systems~IV.4! can be integrated step by step with the result

~cab
0 !35@c1

03~t!1c2
03~t!W11c3

03~t!W2#xab1@c4
03~t!X1W11c5

03~t!X1W2#zab

1@c4
03~t!X2W11c5

03~t!X2W2#yab ,

~cab
1 !35@c1

13~t!1c2
13~t!W1#xab1c3

13~t!@X1W1zab1X2W1yab#,

~cab
1 !35@c1

63~t!X2W11c2
63~t!X2W2#xab1@c3

63~t!1c4
63~t!W11c5

63~t!W2#zab

1c6
63~t!X2X2W2yab ,

~cab
2 !35@c1

63~t!X1W11c2
63~t!X1W2#xab1@c3

63~t!1c4
63~t!W11c5

63~t!W2#yab

1c6
63~t!X1X1W2zab ,

jabcd
3 5S1

3~t!X1X1W2«abcd
0 1@S2

3~t!X1W11S3
3~t!X1W2#«abcd

1 1@S2
3~t!X2W1

1S3
3~t!X2W2#«abcd

3 2S1
3~t!X2X2W2«abcd

4 1@S4
3~t!1S5

3~t!W11S6
3~t!W2#~eacxbd

1ebdxac!1@S7
3~t!X1W11S8

3~t!X1W2#~eaczbd1ebdzac!1@S7
3~t!X2W11S8

3~t!X2W2#

3~eacybd1ebdyac!, ~IV.20!

x~ab!cd
3 5K1

3~t!X1X1W2«abcd
0 1@K2

3~t!X1W11K3
3~t!X1W2#«abcd

1 1@K4
3~t!1K5

3~t!W1

1K6
3~t!W2#«abcd

2 2@K2
3~t!X2W11K3

3~t!X2W2#«abcd
3 1K1

3~t!X2X2W2«abcd
4

1@K7
3~t!1K8

3~t!W1#habcd1@K9
3~t!X2W11K10

3 ~t!X2W2#~eacybd1ebdyac!

2@K9
3~t!X1W11K10

3 ~t!X1W2#~eaczbd1ebdzac!,

f ab
3 5@F1

3~t!1F2
3~t!W11F3

3~t!W2#xab1@F4
3~t!X2W11F5

3~t!X2W2#yab

1@F4
3~t!X1W11F5

3~t!X1W2#zab ,

~Qg
g

ab!
35@ t1

3~t!1t2
3~t!W11t3

3~t!W2#xab1@ t4
3~t!X2W11t5

3~t!X2W2#yab

1@ t4
3~t!X1W11t5

3~t!X1W2#zab ,

Q~ab!cd
3 5T1

3~t!X1X1W2«abcd
0 1@T2

3~t!X1W11T3
3~t!X1W2#«abcd

1

1@T4
3~t!1T5

3~t!W11T6
3~t!W2#«abcd

2 2@T2
3~t!X2W11T3

3~t!X2W2#«abcd
3

1T1
3~t!X2X2W2«abcd

4 1@T7
3~t!1T8

3~t!W1#habcd1@T9
3~t!X2W11T10

3 ~t!X2W2#

3~eacybd1ebdyac!2@T9
3~t!X1W11T10

3 ~t!X1W2#~eaczbd1ebdzac!.

The t-dependent functions in these expressions are given in Appendix 3.
We now turn to the second of the transport equations~IV.4!, which is a partial differential

equation. The system for the expansion coefficientsf i
3 of the rescaled conformal Weyl spinor on

I 8 has the form

~11t!]tf0
31X1f1

32f0
35R0 ,

]tf1
31 1

2X2f0
31 1

2X1f2
31f1

35R1 ,
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]tf2
31 1

2X2f1
31 1

2X1f3
35R2 , ~IV.21!

]tf3
31 1

2X2f2
31 1

2X1f4
32f3

35R3 ,

~12t!]tf4
31X2f3

31f4
35R4 ,

where the right-hand sides are given by

R05A1~t!X1X1W21A2~t!~X1W1!2,

R15B1~t!X1W11B2~t!W1X1W11B3~t!X1W2 ,

R25C1~t!1C2~t!W11C3~t!~W1!21C4~t!W21C5~t!X1W1X2W1 , ~IV.22!

R35B1~2t!X2W11B2~2t!W1X2W11B3~2t!X2W2 ,

R452A1~2t!X2X2W22A2~2t!~X2W1!2,

with t-dependent functionsAi(t),Bj (t),Ck(t) which are listed in Appendix 3. These functions
have been calculated from the lower order expansion coefficients~IV.1!–~IV.3! and from~IV.20!.
The symmetry inherent in these expressions reflects the time-symmetry of the underlying space–
time.

Using the expansion~IV.18! and corresponding expansions of the above-mentioned terms, we
decompose~IV.21! into the following equations. Form>6 the coefficientsf i ;m,k

3 , k50,...,m,
satisfy the homogeneous system

~11t!]tf0;m,k
3 2f0;m,k

3 1AS m

2
21D S m

2
12Df1;m,k

3 50,

]tf1;m,k
3 1f1;m,k

3 2
1

2
AS m

2
21D S m

2
12Df0;m,k

3 1
1

2
Am

2 S m

2
11Df2;m,k

3 50,

]tf2;m,k
3 2

1

2
Am

2 S m

2
11Df1;m,k

3 1
1

2
Am

2 S m

2
11Df3;m,k

3 50, ~IV.23!

]tf3;m,k
3 2f3;m,k

3 2
1

2
AS m

2
11D m

2
f2;m,k

3 1
1

2
AS m

2
12D S m

2
21Df4;m,k

3 50,

~12t!]tf4;m,k
3 1f4;m,k

3 2AS m

2
12D S m

2
21Df3;m,k

3 50.

The coefficientsf i ;4,k
3 , k50,...,4, solve

~11t!]tf0;4,k
3 2f0;4,k

3 12f1;4,k
3 52A6A1~t!W2;4,k1A6A2~t!ak ,

]tf1;4,k
3 1f1;4,k

3 2f0;4,k
3 1 1

2A6f2;4,k
3 5 1

2A6B2~t!ak1A6B3~t!W2;4,k ,

]tf2;4,k
3 2 1

2A6f1;4,k
3 1 1

2A6f3;4,k
3 5@C3~t!2C5~t!#ak1C4~t!W2;4,k , ~IV.24!

]tf3;4,k
3 1f3;4,k

3 1f4;4,k
3 2 1

2A6f2;4,k
3 52 1

2A6B2~2t!ak2A6B3~2t!W2;4,k ,

~12t!]tf4;4,k
3 1f4;4,k

3 22f3;4,k
3 522A6A1~2t!W2;4,k2A6A2~2t!ak ,
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with the coefficientsak defined in~IV.17!. The functionsf i ;2,k
3 , k50,1,2, satisfy

]tf1;2,k
3 1f1;2,k

3 1
1

&
f2;2,k

3 5&B1~t!W1;2,k ,

]tf2;2,k
3 2

1

&
f1;2,k

3 1
1

&
f3;2,k

3 5C2~t!W1;2,k , ~IV.25!

]tf3;2,k
3 2f3;2,k

3 2
1

&
f2;2,k

3 52&B1~2t!W1;2,k ,

while f2;0,0
3 is subject to

]tf2;0,0
3 5C1~t!1@C3~t!12C5~t!#b, ~IV.26!

with b as defined in~IV.17!.
These ordinary differential systems have to be integrated for the initial data~IV.19! at t

50. Since the equations are already quite complicated, we used the program MapleV.4 for this
purpose. Synthesizing the result of these integrations according to~IV.18!, we obtain the following
concise expressions forf i

3 on I 8:

f0
352~11t!~12t!5X1X1W31 1

12f 0~t!mX1X1W21 1
6g0~t!~X1W1!21 1

4h0~t!X1X1r 2,

f1
3525~11t!2~12t!4X1W31 1

6 f 1~t!mX1W2

1 1
3g1~t!W1X1W11 1

2h1~t!X1r 21 1
2k1~t!m2X1W1 ,

f2
35220~11t!3~12t!3W31 f 2~t!mW21g2~t!~W1!2

13h2~t!r 21k2~t!m2W11p~t!m41@q~t!2g2~t!#b, ~IV.27!

f3
355~11t!4~12t!2X2W32 1

6 f 1~2t!mX2W2

2 1
3g1~2t!W1X2W12 1

2h1~2t!X2r 22 1
2k1~2t!m2X2W1 ,

f4
352~11t!5~12t!X2X2W31 1

12f 0~2t!mX2X2W2

1 1
6g0~2t!~X2W1!2

1 1
4h0~2t!X2X2r 2,

with t-dependent functions which can be found in Appendix 3. All the functionsf i
3 have poly-

nomial dependence ont.
The most interesting feature of this solution is its smoothness att561, which, in view of the

singular behavior of Eqs.~IV.23!, ~IV.24! at these points, was not to be expected from the
beginning. To explain its significance we indicate the argument which led to the asymptotic
regularity condition~II.17!. The Bianchi equations, which were used to obtain the evolution
equations for the rescaled conformal Weyl spinor and, consequently, the second of the transport
equations~IV.4!, form an overdetermined system. Thus there are further equations, to which we
refer as to the constraints. In the present case the constraints take the form

t]tf1
31 1

2~X1f2
32X2f0

3!23f1
35S1 ,

t]tf2
31 1

2~X1f3
32X2f1

3!23f2
35S2 , ~IV.28!
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t]tf3
31 1

2~X1f4
32X2f2

3!23f3
35S3 ,

where

S15F1~t!X1W11F2~t!W1X1W11F3~t!X1W2 ,

S25G1~t!1G2~t!W11G3~t!~W1!21G4~t!W21G5~t!X2W1X1W1 , ~IV.29!

S352F1~2t!X2W12F2~2t!W1X2W12F3~2t!X2W2 ,

with functions which are given in Appendix 3. As before, we obtain equations for the coefficients
in the expansion~IV.18!. Together with~IV.23!, ~IV.24! these equations imply the systems

~11t!~5t213!]tf0;6,k
3 1~5t325t215t17!f0;6,k

3 25~t21!3f4;6,k
3 50,

~IV.30!
~12t!~5t213!]tf4;6,k

3 1~5t315t215t27!f0;6,k
3 25~t11!3f4;6,k

3 50,

and

4~31t2!~11t!]tf0;4,k
3 22~12t!3f0;4,k

3 12~12t!3f4;4,k
3 5T1~t!ak1T2~t!W2;4,k ,

~IV.31!
24~31t2!~12t!]tf4;4,k

3 22~11t!3f4;4,k
3 12~11t!3f0;4,k

3 5T1~2t!ak1T2~2t!W2;4,k ,

with functionsT1 andT2 ~given in Appendix 3! derived from the functionsRi andSj .
It turns out that once these equations have been solved, the remaining expansion coefficients

in ~IV.18! can be obtained either by purely algebraic operations or by solving ODEs which are
regular fortP@21,1#. This situation is the same for all ordersp>3 in ~IV.4!. The solutionsy(t),
with y denoting in the above-mentioned case the column vector with entries given by the two
unknowns of~IV.30! and ~IV.31!, can then be given forp>3 in the form~suppressing here all
indices!

y~t!5X~t!X~0!21y01X~t!E
0

t

X~t8!21b~t8!dt8, ~IV.32!

with X(t) denoting a fundamental matrix of the system of ODEs under study. The vector-valued
function b(t) is built from solutions which are obtained by solving the equations of lower order.
In Ref. 6 the equations~written there in a slightly different form! have been discussed in general
and the fundamental matricesX(t) have been derived. As in the case of~IV.30!, ~IV.31!, there
occur homogeneous as well as inhomogeneous systems for generalp>3. Thus for certain values
of the indices~i.e.,p and the indices which arise from expandingup in terms of the functionsTm

i
j )

the functionsb(t) vanish and the solutions are of the formy(t)5X(t)X(0)21y0 . In these cases
some of the entries ofX(t) have logarithmic singularities. The latter drop out of the final expres-
sion precisely if the asymptotic regularity conditions~II.17! are satisfied. In the remaining cases
the entries of the matricesX(t) are polynomials int but det(X)5cf(t)(12t2)p22 with some
constantcÞ0 and some polynomialf (t) satisfyingu f (t)u>1 for utu<1. Furthermore, the column
vectorb(t) has poles. However, it has no logarithmic singularities if the solutions of the equations
of lower order have no logarithmic singularities. Assuming condition~II.17!, the remaining po-
tential source of singularities ofup, p>3, at utu561 are the integrals on the right-hand sides of
the expressions~IV.32!. These have not been analyzed yet. To understand the general situation, it
is clearly of interest to study the problem for the first few values ofp. Remarkably, in the present
case,p53, we find that the integrand in~IV.32! has poles atutu561 and also outside the interval
@21, 1#, that the integral has poles and no logarithmic terms, but that the final solution is a
polynomial int.
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B. The detailed transformation formulas

In this section we will determine expansions for the conformal scale factoru and the
SL(2,C)-valued functionL b

a which define the transformation from theF gauge into the NP gauge
as described in Sec. II C. To calculate the NP constants in terms of the initial data we shall
determine the values of the integrals defining these quantities by taking their limits asr→0. The
gauge in which these integrals are given is based on a sectionC of the generators ofJ`. We shall
try to push this section toI 1. The usefulness of this procedure depends, of course, on the resulting
form of the ODEs onJ` which were used in II C to fix theF gauge.

Near I 1 the hypersurfaceJ6 can be given as the graph$t5ts, r.0% of the functionts

5ts(r,t b
a ) which is given by

ts5
2V

r
@2DabVDabV#21/2. ~IV.33!

Substituting the expansions~IV.8! of V and those of the frame vectors into the Eq.~IV.33!, we get
the expansion

ts511 1
2mr12W1r21O~r3!. ~IV.34!

Setting in~II.35! Z5]t , we obtain for the right-hand side of this equation the expansion

Z~ 1
2¹bQ¹bQ!

Z~Q!
5

5

3
mr22S 229

63
m22

24

5
W1D r31O~r4!. ~IV.35!

SupposeT5T0]t1T1]r1T1X11T2X2 is a vector field defined near and tangent toJ`. De-
note byT* the vector field which is induced by it onJ`. If r andt b

a are used as coordinates on
J`, one finds forT* the expressionT* 5T1]r1T1X11T2X2 . Applying this to the gradient of
Q on J`, we find that the left-hand side of~II.35! is given by

~$22r21 19
3 mr31O~r4!%]r1$ 36

5 X2W1r31O~r4!%X11$ 36
5 X1W1r31O~r4!%X2!~ log f !.

Thus, dividing~II.35! on both sides byr2, we get a differential equation of the formT* (log f )
5g on J` with a vector fieldT* and a functiong which extend smoothly toI 1 such thatT*
522]r1O(r) nearI 1. For given datumf 0 on I 1 this equation has a unique smooth solution
which can be expanded in terms ofr. As shown in our general discussion, the value off 0 has to
be constant onC to fulfill the NP-gauge conditions. We choose

f 052
1

2&

on I 1 and find for the solution of~II.35! the expansion

f 52
1

2&
H 11

5

6
mr1S 191

252
m21

6

5
W1D r21O~r3!J . ~IV.36!

To obtain the matrix elementsl b
a of ~II.36! by using~II.37! we have to calculate the deriva-

tives caa8
* (Q) of the conformal factor. Using the expansion coefficients derived in Sec. IV A, we

get

c008
* ~Q!5O~r4!,

c018
* ~Q!5&$X1W1r31O~r4!%, c108

* ~Q!5&$X2W1r31O~r4!%, ~IV.37!
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c118
* ~Q!5&$22r13mr21~8W123m2!r31O~r4!%.

Substituting these expressions into the formulas~II.37! the matrix elementsl 1
0 andl 1

1 can be
calculated explicitly up to a U~1! phase transformation. Since the choice of the latter is not
important for the following we choose it suitably to obtain

l 1
0 5r1/2$12 1

3mr1~2 7
5W11 113

252m
2!r21O~r3!%, l 1

1 5r5/2$ 1
2X1W11O~r!%,

~IV.38!

which allows us to determine also the expansion

E118
+

5&$ 1
4mr21~2 7

12m
212W1!r31O~r4!%]t1&$ 1

2r
22 7

6mr31~ 577
252m

22 31
5 W1!r4

1O~r5!%]r1&$2 9
5X2W1r31O~r4!%X11&$2 9

5X1W1r31O~r4!%X2 . ~IV.39!

To solve the differential equation for the affine parameter on the generators ofJ`, we observe
that already in the case of Minkowski space–time this parameter is a singular function ofr, given
by u+52&r211u

*
+ . The inspection of the expansion~IV.39! suggests to search for a solution of

the form

u+5w1&S 2
1

r
1

7

3
m logr D . ~IV.40!

This ansatz does indeed lead to a smooth regular equation forw nearI 1. It allows us to calculate
the expansion

u+5&H 2
1

r
1 7

3m logr1u
*
+ 1~ 109

126m
21 62

5 W1!r1O~r2!J , ~IV.41!

whereu
*
+ denotes an arbitrary constant initial datum onI 1. As described in Sec. II C, the matrix

elementsl 0
0 andl 0

1 can now be determined. We obtain the expansions

l 0
0 5r3/2H 77

10
X2W11O~r!J , l 0

1 5r21/2$212 1
3mr1O~r2!%. ~IV.42!

Knowing the matrix l b
a on null infinity, we can calculate the limits of the NP-spin-

coefficientsG01811
+ andG10800

+ at I 1 asr→0. Substituting our expansions into the formula for the
connection coefficients

Gad8bc
+

5l a
f l̄ f 8

a8l b
g l c

h G f f 8gh
* 2eghl b

g Eaa8
+

~l c
h !, ~IV.43!

we arrive at the expressions

G01811
+ u I 15 lim

r→0
G01811

+
50, G10800

+ u I 15 lim
r→0

G10800
+

5
11

6&
m. ~IV.44!

The next step is to calculate the conformal scale factoru by solving Eq.~II.25!. To determine
the Ricci spinor componentF225

1
2RabE118

+a E118
+b , we have to determine the Ricci tensorRab of

the metricg. The components of the tensor

Qabª
1
2R̂~ab!2

1
12gabR̂1 1

4R̂@ab# ~IV.45!
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in the frame$caa8
* %, whereR̂ab and R̂ denote, respectively, the Ricci tensor and the curvature

scalar induced by the Weyl connection¹̂ with coefficientsĜag
b 5Gag

b 1da
b f g1dg

b f a2gag f b ~cf.
Ref. 14!, are among the variables of the conformal field equations. Thus they are known to third
order in ther coordinate. From the general transformation law

R̂ab5Rab22¹~a f b)12 f a f b2gab~¹g f g12 f g f g!14¹@a f b] , ~IV.46!

we get the relation

Qab5 1
2~Rab2 1

6gabR!2¹b f a1 f a f b2 1
2gab f g f g. ~IV.47!

From this we derive the expression

F225QabE118
+a E118

+b
1E118

+
~E118

+a f a!2~E118
+a f a!2. ~IV.48!

Substituting here~IV.39! and the expansion of the one-formf obtained from the solution of the
field equations we get the expansion

F225
5
6 mr31~2 167

42 m21 18
5 W1!r41O~r5! ~IV.49!

on J`.
On I 1 is induced in our gauge the standardS2 metric. Therefore we solve Eq.~II.25! with the

initial condition

lim
r→0

u51. ~IV.50!

For the conformal scale factor we obtain then the expansion

u511 5
6mr1~ 6

5W11 191
252m

2!r21O~r3!. ~IV.51!

By the choice of the initial value for the conformal factor the scale functionp appearing in the
gauge transformations is also fixed with

p[1 on J`. ~IV.52!

In the conformal gauge characterized by the conformal factorQ!
ªuQ the generators of null

infinity are expansion free. Proceeding as indicated before, we construct the NP frame$Eaa8
• %.

Observing the expansions~II.36! and ~II.39! of the null vectorsE118
+ and E118

• respectively, and
taking into account the properties of the conformal rescaling we get the relations

L 1
0 5u21/2l 1

0 eic, L 1
1 5u21/2l 1

1 eic, ~IV.53!

with function c, characterizing the phase freedom, which will be fixed later. Using~IV.38! and
~IV.51! we get the expansions

L 1
0 5r1/2$12 3

4mr1~ 15
32m

222W1!r21O~r3!%eic, L 1
1 5r5/2$ 1

2X1W11O~r!%eic,
~IV.54!

from which we derive in turn the expansion

E118
•

5&$ 1
4mr21~2m212W1!r31O~r4!%]t1&$ 1

2r
222mr31~ 253

56 m22 37
5 W1!r41O~r5!%]r

1&$2 9
5X2W1r31O~r4!%X11A2$2 9

5X1W1r31O~r4!%X2 , ~IV.55!
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of the vector fieldE118
• tangent to the null generators ofJ`. Furthermore the new affine parameter

has the form

u•5&H 2
1

r
14m logr1u

*
• 1S 195

28
m21

74

5
W1D r1O~r2!J , ~IV.56!

with a free constantu
*
• . Using the formula analogous to~II.38! we derive

L 0
0 5r1/2$2 101

10 X2W1r1O~r2!%e2 ic, L 0
1 5r21/2$212 3

4mr1O~r2!%e2 ic. ~IV.57!

To determine the phase factore6 ic we solve equation~II.27! along the generators of null infinity.
Expanding the right-hand side, we get

E118
•

~c!52Im$L̂ 1
f L̂̄ f 8

18L̂ 1
g L̂ 0

h G f f 8gh
!

2L̂ 0
0 E118

•
~L̂ 1

1 !1L̂ 0
1 E118

•
~L̂ 1

0 !%, ~IV.58!

whereL̂ b
a has been obtained from the above-mentioned matrixL b

a by settingc50. Substituting
the known data into Eq.~IV.58!, the solutionc which is needed to satisfy the gauge condition
G11801

• uJ50, is found to have an expansion

c5O~r2!, ~IV.59!

which entails the expansions

eic511O~r2!, E118
•

~eic!5O~r3!, E018
•

~eic!5O~r2!. ~IV.60!

The matrix elementsL b
a are now determined on null infinity to the precision needed in our

later calculations, but in the definition~III.5! of the NP constants appear some of the transversal
derivativesE008

• (L b
a ) of the matrix elements as well. Using the general formulas~II.41! we get

the expansions

E008
•

~L0
0!5&r1/2$ 113

40 X2W11O~r!%, E008
•

~L1
0!5&r23/2$ 1

41 85
48mr1O~r2!%,

~IV.61!
E008

•
~L0

1!5&r21/2$ 1
41 67

48mr1O~r2!%, E008
•

~L1
1!5&r3/2$2 47

40X1W11O~r!%,

where we have taken into account the expressions~IV.60! for the phase factor.
The transversal derivative of the conformal scale factorE008

• (u) is fixed on null infinity by the
requirementR@g!#uJ`50. Thus it has to satisfy equation~II.32! with initial datum

E008
•

~u!u I 15 lim
r→0

up21G10800
+

5 lim
r→0

G10800
+ . ~IV.62!

Given the matrixL b
a and the conformal scale factoru, all the terms appearing in Eq.~II.32! can

be calculated in a straightforward way, with the exception of the curvature scalarR@g#, whose
calculation requires some explanation. Contracting Eq.~IV.47! we get the identity

R@g#56~Qaa8bb81¹aa8 f bb81 f aa8 f bb8!e
abēa8b8, ~IV.63!

where

¹aa8 f bb85caa8
* ~ f bb8!2~Gaa8cb

* ēb8c81Ḡaa8c8b8
* ebc! f cc8.

Expanding these quantities we get

R@g#5~ 23
3 m22 168

5 W1!r21O~r3!,

~IV.64!

2222 J. Math. Phys., Vol. 41, No. 4, April 2000 H. Friedrich and J. Kánnár

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.59.226.54 On: Wed, 10 Dec 2014 15:29:58



F!5~ 23
36m

224W11 6
5a2X1W12 6

5a1X2W1!r21O~r3!,

which entail with~II.32! the expansion

E008
•

~u!5&$ 11
12m1~ 13

6 m224W11 6
5a2X1W12 6

5a1X2W1!r1O~r2!%. ~IV.65!

Given the above-mentioned expansion, we can calculate expansions of various quantities of
physical interest, such as the Bondi energy momentum, the angular momentum, and the radiation
field on J`. Since the coefficients in these expansions are given directly in terms of the initial
data on the Cauchy hypersurfaceS, the expansions contain information about the evolution of the
field over an infinite range. As an example we will calculate in the following the NP constants.

We close this section with a remark on the BMS group, the group of transformation between
different Bondi-type systems. It was shown in Ref. 20 that for solutions for which the the condi-
tion lim

u•→2`
G@e#01800

•
50 could be realized at spacelike infinity, where the subscript ‘‘e’’ is to

denote the electric part of the considered spin-coefficient, one can single out the inhomogeneous
Lorentz group as the group of transformations preserving this condition. It turns out that under our
assumptions, which include in particular the time-symmetry of the solution, the even stronger
condition lim

u•→2`
G01800

•
50 is satisfied. This means that for our solutions there is a natural way

to single out the inhomogeneous Lorentz group as asymptotic symmetry group.

C. The NP constants in time symmetric space–times

Using the formulas of the previous sections we can express the NP constants in terms of the
initial data for the corresponding time symmetric solutions. All the quantities appearing in the
integral ~III.5! are known in terms of the initial data to the precision needed to perform the limit
r→0.

We have to express the spin-2 spherical harmonics2Ȳ2,m in terms of the functionsTm
j
k . By

~III.3! the definition of theZ operator is based on the choice of the complex null vector fieldE018
• .

In Appendix 1 we have applied the standard choice and derived the relations between the opera-
tors X1 andZ and between the spin-2 spherical harmonics2Y2,m and the functionsTm

j
k . By this

choice we should have

E018
•

5
i

&
X1

on I 1. However, calculating the vectorE018
• in the previous conventions used, we get

E018
• u I 15

1

&
X2 . ~IV.66!

There are two causes of the difference. We fixed the phase factor such as to simplify the calcu-
lations and the conventions used in the F gauge and the NP gauge are such that one has to swap
the two spinors of the dyad to get from one to the other convention. The form~IV.66! of E018

•

corresponds to2 i&m̄, if m denotes the standard complex null vector used in Appendix 1. This
means that~IV.66! corresponds to the operator2 i Zp instead ofZ discussed in the Appendix.
Observing this and~A9! in ~III.4! we obtain the formula

Gm5 i 22m~5p!1/2 R T̄4
22m

4E008
•

~f0!m for m522,...,2, ~IV.67!

wherem5(1/4p2)dS da is the Haar measure on SU~2!.
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To calculate~IV.67! we expand the integrand in terms ofr and take the limit asr→0. For this
we have to determine forE008

• (f0) only the terms of orderO(1). In the limit only these terms
give a contribution while the terms of orderr21 cancel each other. Using the explicit results of the
previous sections we arrive after some lengthy but straightforward calculations at the expression

Gmu I 15 lim
r→0

Gm

5 i 22m~10p!1/2

3 R T̄4 4
22mS 2

5

32
X2X2r 21

635

8
mX2X2W22

1905

2
~X2W1!21

16

3
X2X2W3Dm.

~IV.68!

Expanding the functions in the brackets in terms of the functionsTm
k

j and using the orthogonality
relations satisfied by these functions we can perform the integration. All terms except the last one
give some contributions. Using the formulas~IV.7!, ~IV.12!, and~IV.16! we get the final expres-
sion

Gmu I 15
i 22m

2
~15p!1/2H 127~mW2;4,22m26a22m!2

1

2A6
R22m* J , ~IV.69!

where the coefficientsa22m , which are quadratic inW1;2,k , are given by~IV.17!. We note that the
structure of this more general expression is essentially the same as that of the expression obtained
by Newman and Penrose in the case of static and stationary solutions.

V. CONCLUDING REMARKS

We have seen that, under the assumptions explained previously, certain fields which are given
near spacelike infinity in terms of Bondi-type systems can be expressed in a straightforward way
in terms of the gauge conditions used in Ref. 6 and can thus be related directly to the structure of
the Cauchy data which give rise to the space–times by Einstein evolution. The calculations
involved are quite lengthy but taking into account that we relate quantities which are obtained by
a nonlinear evolution over an infinite domain of space-time to the data from which they arise, the
overall structure of the argument is surprisingly simple.
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APPENDIX: DEFINITIONS AND GENERAL IDENTITIES

1. X¿ and the Z operator

In this section we describe the relation between the operatorsZ, Zp, introduced in Ref. 20 and
the operatorsX1 , X2 , X used in Ref. 6.

Consider on the group SU~2!, which is diffeomorphic toS3, coordinates$x,y,a% such that
outside a set of measure zero the general group elementt b

a PSU~2! is given by

tb
a5

1

A11zz̄
S eia ie2 iaz

ieiaz̄ e2 ia D , ~A1!
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with z5x1 iy . Thena is a parameter andx andy are constant on the orbits of the the subgroup
U~1!. The tangent vectors]x , ]y , and ]a , respectively, at the unit element coincide with the
generatorsu1 , u2 , and u3 of the Lie algebra of SU~2!. Writing P5 1

2(11zz̄), we get for the
corresponding left invariant vector fields the expressions

Zu1
5P cos~2a!]x1P sin~2a!]y1 1

2@x sin~2a!2y cos~2a!#]a ,

Zu2
52P sin~2a!]x1P cos~2a!]y1 1

2@y sin~2a!1x cos~2a!#]a , ~A2!

Zu3
5 1

2]a ,

whence

X152Zu2
2 iZu1

5e2iaH 2 i&S m2
i

2&
z̄]aD J , X522iZu3

52 i ]a ,

~A3!

X252Zu2
1 iZu1

5e22iaH i&S m̄1
i

2&
z]aD J ,

where the vectorsm5&P]z and m̄5&P]z̄ define a complex dyad tangent to the surfaces$a
5const% which is null with respect to the standardS2-metric ds25P22dz dz̄ on these surfaces.

We may identify SU~2! with the spin frame bundle over the base manifoldS2 with structure
group U~1!. The section$a50% can be identified with the base manifold~with a point omitted!.
Here we take the complex null frame$m,m̄% defined previously, where a group elementua

b

5diag(eia,e2ia)PU(1) acts asu($m,m̄%)5$e2iam,e22iam̄%. A function h on S3 is said to have
spin weightN, if it can be decomposed ashuz,a5e2Niah0 , where the functionh0 , is independent
of the parametera along the fibers. TheZ operator is defined by the complex null vectorm and
acts on a spin-N function as

Zhuz,a5&$m~h0!1Nh0m̄gmbdbmg%e2~N11!ia5&H m~h0!1
1

&
Nz̄h0J e2~N11!ia, ~A4!

where d denotes the Levi-Civita differential operator induced by the standardS2 metric. This
means thatZh has spin weightN11. ~This treatment of the functions with spin weight and theZ
operator is a bit different from the one which can be found in the literature~cf. Refs. 20, 18, and
19!, where the expressions are evaluated on some cross section ofS3).

The horizontal lift of the vectorm defined with respect to the Levi-Civita connectiond is
given by

mHuz,a5m2
i

2&
z̄]a . ~A5!

This means that theZ operator onS3 is given by

Zuz,a5&e2iamH . ~A6!

Comparing the formulas~A3!, ~A5!, and~A6! we get the relations

X152 i Z, X25 i Zp, X52@Z,Zp#. ~A7!

The spherical harmonicsYl ,m are defined as an orthogonal function system on the sphereS2.
They can be extended toS3 as functions with zero spin weight, i.e., they became independent on
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the parameter along the fibers. This means that they can be expanded asYl ,m5(k, j ck jT2k
j
k in

terms of the functionsTm
j
k . The spherical harmonics satisfy the equationZZpYl ,m52 l ( l

11)Yl ,m , so using the relations~A7! and ~II.16! we arrive at the relation

Yl ,m5(
j

cjT2l
j
l . ~A8!

Taking into account the explicit coordinate expressions of the group elements one could determine
the expansion coefficientscj . Using the definition of the spin harmonicssYl ,m ~cf. Ref. 18! and
Eqs.~II.16!, ~A7!, and~A8! one can also derive the relation between the functionssYl ,m and the
functionsTm

j
k . We shall only need the transformation formulas

Y2,m5~2 i !42mS 5

4p D 1/2

T4 2
22m ,

~A9!

2Y2,m5~2 i !22mS 5

4p D 1/2

T4 0
22m , 22Y2,m5~2 i !22mS 5

4p D 1/2

T4 4
22m .

2. Some useful spinor identities

Here we describe irreducible decompositions of spinors with four unprimed indices in terms
of the ‘‘primary spinors’’«abcd

i , habcd, xab , yab , zab andeab , where

xab5&e (a
0eb)

1, yab52
1

&
ea

1eb
1, zab5

1

&
ea

0eb
0,

~A10!
«abcd

i 5e (a
(eeb

fec
ged)

h) i, habcd52ea~ced)b .

It is well known that a spinorAabcd satisfyingAabcd5A(ab)(cd)52Acdab can be decomposed in
the form Aabcd5eacAbd1ebdAac with Aab5 1

2Aa f b
f5A(ab) and that a spinorSabcd satisfying

Sabcd5S(ab)(cd)5Scdab can be written in the formSabcd5S(abcd)1
1
3habcdS with SªSe f

e f . It
follows from this that an arbitrary four index spinor with symmetriesXabcd5X(ab)(cd) can be
expanded in terms of«abcd

i , eacxbd1ebdxac , eacybd1ebdyac , eaczbd1ebdzac andhabcd.
The following relations were frequently used in the calculations:

yabxcd52«abcd
3 2

1

2&
~eacybd1ebdyac!, zabxcd5«abcd

1 1
1

2&
~eaczbd1ebdzac!;

xabx
ab521, xaby

ab50, xabz
ab50, yaby

ab50, yabz
ab52 1

2, zabz
ab50;

xa
fxb f5

1

2
eab , ya

fxb f5
1

&
yab , za

fxb f52
1

&
zab ,

ya
fyb f50, ya

fzb f52
1

2
ea

1eb
0, za

fzb f50;

«abcd
0 xcd50, «abcd

0 ycd52zab , «abcd
0 zcd50, «abcd

1 xcd52 1
2zab ,

«abcd
1 ycd52 1

4xab , «abcd
1 zcd50, «abcd

2 xcd52 1
3xab , «abcd

2 ycd5 1
6yab ,

«abcd
2 zcd5 1

6zab , «abcd
3 xcd5 1

2yab , «abcd
3 ycd50, «abcd

3 zcd5 1
4xab ,
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«abcd
4 xcd50, «abcd

4 ycd50, «abcd
4 zcd52yab;

x(abxcd)52«abcd
2 , x(abycd)52«abcd

3 , x(abzcd)5«abcd
1 ,

y(abycd)5
1
2«abcd

4 , y(abzcd)52 1
2«abcd

2 , z(abzcd)5
1
2«abcd

0 ;

x(a
f «b)cd f

0 5
1

&
«abcd

0 , x(a
f «b)cd f

1 5
1

2&
zabxcd , x(a

f «b)cd f
2 5

1

12
~eacxbd1ebdxac!,

x(a
f «b)cd f

3 5
1

2&
yabxcd , x(a

f «b)cd f
4 52

1

&
«abcd

4 , hab(c
fxd) f5

1

2
~eacxbd1ebdxac!;

y(d
f «c)ab f

2 52
1

2&
«abcd

3 1
1

24
~eacybd1ebdyac!, z(d

f «c)ab f
2 52

1

2&
«abcd

1 1
1

24
~eaczbd1ebdzac!;

«2
ab

e f«cde f
1 52

1

12
«abcd

1 1
1

8&
~eaczbd1ebdzac!,

«2
ab

e f«cde f
3 52

1

12
«abcd

3 1
1

8&
~eacybd1ebdyac!;

«abcd
2 «2 abcd5 1

6, «2
ab

e f«cde f
2 52 1

6«abcd
2 1 1

18habcd.

3. The detailed expressions for u p, pÄ0,...,3

The t-dependent functions occurring in~IV.2!,

c01~t!5m~ 4
3t

32 1
3t

5!, c61~t!5m~t22 1
6t

4!, S1~t!5&m~ 1
2t

22 1
4t

4!,

K1~t!5m~212t14t3!, F1~t!5 1
3mt4, t1~t!5&4tm,

T1~t!56m~12t2!, f1
1~t!5212~12t!2, f2

1~t!52m2~18t223t4!,

f3
1~t!5236136t2.

The t-dependent functions occurring in~IV.3!,

c1
02~t!5m2~22t323t51 8

7t
72 1

7t
9!, c2

02~t!516t32 26
5 t51 6

5t
7,

c3
02~t!58t32 7

5t
52 3

5t
7, c12~t!5m~24t21 2

3t
4!,

c1
62~t!5m2~22t213t42 8

9t
61 1

14t
8!, c2

62~t!512t223t41 3
5t

6,

c3
62~t!526t22 1

2t
41 3

10t
6, S1

2~t!5&m2~ 4
3t

42 2
9t

62 1
28t

8!,

S2
2~t!5&~6t22 5

2t
41 9

10t
6!, S3

2~t!5&~2 5
4t

413t22 9
20t

6!,

S4
2~t!5236t2111t41 3

5t
6, K1

2~t!5m2~24t28t314t52 4
21t

7!,

K2
2~t!52144t172t32 108

5 t5, K3
2~t!5m2~2 20

3 t31 8
3t

52 20
63t

7!,
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K4
2~t!52&2t3, K5

2~t!5248t1 36
5 t5,

F1
2~t!5m2~22t21 1

3t
42 4

9t
61 1

7t
8!, F2

2~t!52t42 6
5t

6,

F3
2~t!53t41 3

5t
6, t1

2~t!5&m2~212t2 8
3t

31 4
3t

5!,

t2
2~t!5&~48t216t3!, t3

2~t!5&~24t18t3!,

T1
2~t!5m2~212112t2210t41 2

3t
6!, T2

2~t!572272t2136t4,

T3
2~t!5m2~4t22 8

3t
41 4

9t
6!, T4

2~t!52&6t2,

T5
2~t!524212t4, f1

2~t!52~211t!4,

f2
2~t!54m~ 37

10t
62 41

5 t52 41
2 t4146t3218t2!, f3

2~t!516~11t!~211t!3,

f4
2~t!56~2 8

21t
81 14

3 t6215t416t2!m3, f5
2~t!56m~2 46

5 t6162t4272t2!,

f6
2~t!5272~11t!2~211t!2.

The t-dependent functions occurring in~IV.20!,

c1
03~t!5~3t3118t51 283

21 t72 1510
189 t91 2972

2079t
112 74

693t
13!m3,

c2
03~t!5~244t32 588

5 t51 268
7 t72 58

7 t91 6
5t

11!m,

c3
03~t!548t32 96

5 t51 312
35 t72 12

7 t9,

c4
03~t!5~220t326t51 439

70 t72 573
280t

92 1
40t

11!m,

c5
03~t!516t324t52 4

7t
71 4

7t
9,

c1
13~t!5~12t2115t42 14

3 t61 3
7t

8!m2,

c2
13~t!5272t2118t42 18

5 t6,

c3
13~t!5236t213t41 9

5t
6,

c1
63~t!5~18t2112t42 31

5 t61 3
2t

82 3
40t

10!m,

c2
63~t!5212t21 4

5t
62 2

7t
8,

c3
63~t!5~ 9

2t
22 33

2 t41 50
3 t62 515

84 t81 25
27t

102 34
693t

12!m3,

c4
63~t!5~248t21105t42 453

10 t61 2847
280 t82 7

8t
10!m,

c5
63~t!536t2212t41 24

5 t62 6
7t

8,

c6
63~t!523t222t41 3

5t
61 1

14t
8,

S1
3~t!529t222t41 13

5 t61 1
14t

8,
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S2
3~t!5~108t22168t4186t62 39

5 t82 3
20t

10!m,

S3
3~t!5272t2148t42 72

5 t62 4
7t

8,

S4
3~t!5~2 9

4t
22 37

4 t41 19
2 t62 827

168t
81 355

378t
102 6

77t
12!&m3,

S5
3~t!5~6t21 69

2 t42 333
20 t61 1999

560 t81 13
80t

10!&m,

S6
3~t!5~18t226t41 24

5 t62 9
7t

8!&,

S7
3~t!5~23t22 33

2 t41 177
20 t62 379

112t
81 1

40t
10!&m3,

S8
3~t!5~6t222t41 3

7t
8!&m,

K1
3~t!526t28t31 18

5 t51 4
7t

7,

K2
3~t!5~144t112t32 351

5 t51 237
5 t72 17

4 t9!m,

K3
3~t!5296t116t31 72

5 t52 64
7 t7,

K4
3~t!5~254t112t32216t51 796

7 t72 440
21 t91 16

11t
11!m3,

K5
3~t!5~576t2216t31 1962

5 t52 714
5 t71 23

2 t9!m,

K6
3~t!52432t1288t32 864

5 t51 288
7 t7,

K7
3~t!5~40t3216t51 100

21 t72 160
189t

91 20
693t

11!m3,

K8
3~t!5~2240t31 582

5 t52 218
7 t71 23

6 t9!m,

K9
3~t!5~9t32 33

20t
52 13

20t
71 1

80t
9!&m,

K10
3 ~t!5~24t31 6

5t
5!&,

F1
3~t!5~9t212t42 7

3t
61 26

7 t82 20
21t

101 74
693t

12!m3,

F2
3~t!5~260t2136t4212t61 106

35 t82 6
5t

10!m,

F3
3~t!52 24

5 t61 12
7 t8,

F4
3~t!5~212t226t41 7

2t
61 169

56 t81 1
40t

10!m,

F5
3~t!54t42 4

5t
62 4

7t
8,

t1
3~t!5~36t120t3146t52 296

21 t71 272
189t

9!&m3,

t2
3~t!5~2312t224t32 72

5 t52 40
7 t7!&m,

t3
3~t!5~144t296t31 144

5 t5!&,

t4
3~t!5~296t212t31 294

5 t52 86
35t

7!&m,

t5
3~t!5~48t2 48

5 t5!&,
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T1
3~t!5319t223t42t6,

T2
3~t!5~272236t2181t42 423

5 t61 33
4 t8!m,

T3
3~t!548224t2116t6,

T4
3~t!5~27218t21180t42134t61 204

7 t82 16
7 t10!m3,

T5
3~t!5~22881216t22558t41 1326

5 t62 243
10 t8!m,

T6
3~t!52162216t21216t4272t6,

T7
3~t!5~224t2116t42 20

3 t61 32
21t

82 4
63t

10!m3,

T8
3~t!5~144t22102t41 178

5 t62 57
10t

8!m,

T9
3~t!5~27t22 81

4 t42 11
20t

61 9
80t

8!&m,

T10
3 ~t!5~212t216t4!&.

The t-dependent functions occurring in~IV.22!,

A1~t!5~36t278t2182t32 97
2 t41 6

5t
51 169

5 t62 208
7 t71 54

7 t8!m,

A2~t!52648t11728t221692t31432t41 2592
5 t52 2286

5 t61 756
5 t72 162

5 t8,

B1~t!5~108t2234t22396t311503t42579t52 14939
20 t61 11 682

35 t71 40 413
560 t82 2591

70 t9

1 177
80 t10!m2,

B2~t!52648t11404t22540t32810t41 1404
5 t51 1458

5 t62108t71 108
5 t8,

B3~t!5~272t1168t2124t32274t41120t51 306
5 t6232t71 6

7t
8!m,

C1~t!5~227t1342t32696t51 2598
7 t72 4555

63 t91 1079
231 t11!m4,

C2~t!5~504t23492t31 17 607
5 t52 41 289

35 t71 16 559
140 t9!m2,

C3~t!521296t12376t32 4752
5 t51216t7,

C4~t!5~2432t1792t32 3072
5 t51 816

7 t7!m,

C5~t!52216t1108t31 648
5 t51 324

5 t7.

The t-dependent functions occurring in~IV.27!,

f 0~t!52181216t22240t3118t4248t51204t62144t7130t8,

f 1~t!5292216t21696t32198t42 2544
5 t51 984

5 t61 936
7 t72 411

7 t8,

f 2~t!5232216t21372t42 936
5 t61 219

7 t8,

g0~t!510821944t214752t325724t41 19 008
5 t52 6264

5 t61 864
5 t72 108

5 t8,

g1~t!5542972t211620t31378t42 11 448
5 t51 5778

5 t61 108
5 t72 108

5 t8,
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g2~t!5182540t21972t42 2808
5 t61 108

5 t8,

h0~t!5 3
2, h1~t!5 3

4, h2~t!5 1
4,

k1~t!5108t22276t32129t41 4077
5 t52 3289

10 t62 9439
35 t71 32 803

280 t81 463
20 t92 2721

280 t10,

k2~t!5252t22942t41 3614
5 t62 6341

35 t81 99
7 t10,

p~t!52 27
2 t21 171

2 t42116t61 1299
28 t82 911

126t
101 1079

2772t
12,

q~t!5 216
5 t82 576

5 t61648t42864t2.

The t-dependent functions occurring in~IV.29!,

F1~t!5~72t22 1071
2 t41 4077

5 t52 2639
20 t62 18 878

35 t71 113 287
560 t8

1 1389
20 t92 15 087

560 t10!m2,

F2~t!52864t211584t32810t42 1296
5 t51 882

5 t61 432
5 t72 108

5 t8,

F3~t!5~236t2240t31156t42 888
5 t51 194

5 t61 456
7 t72 198

7 t8!m,

G1~t!5~ 27
2 t21 171

2 t42348t61 6495
28 t82 911

18 t101 1079
308 t12!m4,

G2~t!5~2144t221071t41 3679
2 t62 220 837

280 t81 24 999
280 t10!m2,

G3~t!51116t42468t61 648
5 t8,

G4~t!5174mt42 1824
5 mt61 684

7 mt8,

G5~t!5432t22234t41 306
5 t61 316

5 t8.

The t-dependent functions occurring in~IV.31!,

T1~t!5246 656t1124 416t22138 240t3151 840t4131 104t52 133 056
5 t6112 096t7

2 50 112
5 t81 10 368

5 t9,

T2~t!5~5184t23456t225088mt326048t4112 288t51384t624128t711824t8

21344t91384t10!m.
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